
Chapter 9

Description and Properties of
Convolutional Codes

Together with block codes, convolutional codes form the second large class of
codes used for error-control coding. Convolutional and block codes could be
formally seen as identical from a certain point of view, but their descriptions,
their properties, their decoding methods and their applications are very different.
The important differences between the two classes of codes are as follows:

• Convolutional encoders do not transform information words into codewords
block by block, but transform a whole sequence of information bits into a
sequence of encoded bits by convolving the information bits with a set of
generator coefficients.

• Convolutional codes are not constructed by analytical methods but by trial
and error methods (i.e., computer search).

• Primarily, only few very simple convolutional codes are of practical interest.
These are much more intelligible and easier to describe than block codes.

• Convolutional decoders can easily process soft-decision input (i.e., informa-
tion on the reliability of the demodulator output) and compute soft-decision
output (i.e., information on the reliability of the estimated information bits).

• In contrast to block codes, convolutional codes do not require a block syn-
chronization.

Since soft-decision information can be processed without further expense and
leads to the gains described in Section 1.7, convolutional codes should always
be used in connection with soft-decision demodulators. So convolutional codes
should not really be called error-correcting codes but transmission codes. Thus
the determination of bounds for the correction or detection of single errors or
burst errors is unnecessary – a strong contrast to block codes.

In this chapter, we will establish various algebraic and non-algebraic de-
scriptions for convolutional codes and, in particular, a distance structure by

352 9. Description and Properties of Convolutional Codes

an analytical approach. The main emphasis of the next chapter will be on
maximum-likelihood (ML) decoding with the Viterbi algorithm, the calculation
of the error probability and the performance of convolutional codes. In Chapter
11, convolutional codes are used as the basis for trellis coded modulation.

9.1 Linear Encoders and Shift Registers

For convolutional codes, the information symbols u and the encoded symbols a
are usually not q = pm-ary, but simply binary: u, a ∈ F2 = {0, 1}. All arithmetic
operations are performed as modulo 2. Similar as for the fundamental principle
of block encoding in Figure 1.7, the sequences of information bits and encoded
bits are divided into small blocks of lengths k and n, respectively, which are now
indexed by r:

ur = (ur,1, . . . , ur,k)

ar = (ar,1, . . . , ar,n).

The assignment of the encoded n-tuples to the information k-tuples is unique and
reversible as well as time-invariant but in contrast to block codes not memoryless:

Definition 9.1. A convolutional code of rate R = k/n is given by an encoder
with memory as follows: the current code block depends on the current informa-
tion block and the m previous information blocks

ar = encoder(ur,ur−1, . . . ,ur−m). (9.1.1)

The encoder is a linear shift register, i.e., the encoded bits are linear combina-
tions of the information bits. For the formal description we introduce generator
coefficients gκ,ν,µ ∈ F2 with 1 ≤ κ ≤ k, 1 ≤ ν ≤ n and 0 ≤ µ ≤ m, so that the
n sequences of encoded bits are convolutions of the k information bit sequences
with the generator coefficients

ar,ν =
m∑
µ=0

k∑
κ=1

gκ,ν,µur−µ,κ. (9.1.2)

The variable m is called memory length and m+ 1 is called constraint length.

The parameter m not only influences the code rate but also the performance
of the code and the complexity of the decoding. The constraint length is often
denoted k or K, however, this might cause confusion with the information block
length. Formally, block codes are special convolutional codes with m = 0.

For block codes, k and n are usually large but most of the convolutional
codes used in practice have k = 1 (i.e., one information block consists of one
information bit) and n = 2 or n = 3. Therefore the block structure is uninterest-
ing and non-existent for the information bits. Instead, sequences are mapped to

9.1 Linear Encoders and Shift Registers 353

sequences. Nowadays, the memory length for ML decoding is technically limited
to m = 6 or m = 8 (also called short-memory codes), except when using ex-
tremely complex decoders for special applications (see Section 12.1). However,
with these relatively simple convolutional codes we can achieve coding gains
comparable to those of complicated block codes.

Usually, a convolutional code is determined by the encoder which is imple-
mented as a linear shift register. The shift register contains ur,ur−1, . . . ,ur−m.
Of these k(m+1) bits n linear combinations are computed which form the com-
ponents of ar. Then ur+1 is inserted and ur−m is pushed out. To begin with at
r = 0 the shift register is loaded with zeros, i.e., u−1 = · · · = u−m = 0 .

ur–2,2ur–2,1ur,2ur,1 ur–1,2ur–1,1

+

+ +

+ ar,1

ar,2

ar,3

Figure 9.1. A rate-2/3 convolutional encoder with m = 2

Example 9.1. Consider a rate-2/3 code with m = 2, where the encoder is
defined by the shift register in Figure 9.1. In step r, the k = 2 information bits
ur = (ur,1, ur,2) are inserted and from the content (ur,ur−1,ur−2) of the shift
register, ar = (ar,1, ar,2, ar,3) is computed according to

ar,1 = ur,2 + ur−1,1 + ur−2,2

ar,2 = ur,1 + ur−1,1 + ur−1,2

ar,3 = ur,2.

Two information bits are always mapped to 3 encoded bits and therefore R = 2/3
for the code rate. �

Example 9.2 (standard example). In the following and very often through-
out Chapters 9 and 10, the rate-1/2 code with m = 2 and the encoder
shown in Figure 9.2 will be used and referred to as the standard example. In
step r the information bit ur is inserted into the shift register and with this
ar = (ar,1, ar,2) = (ur+ur−1+ur−2, ur+ur−2) is computed. For the information
bit sequence

(u0, u1, u2, u3, u4, u5) = (1, 1, 0, 1, 0, 0)

354 9. Description and Properties of Convolutional Codes

the corresponding encoded bit sequence is

(a0, a1, a2, a3, a4, a5) = (11, 01, 01, 00, 10, 11).

This simple code is actually useful in practice. Later, we will see that the
asymptotic coding gain Ga,soft is nearly 4 dB. �

++

+

ur–1 ur–2ur

ar,1

ar,2

ur

Figure 9.2. A rate-1/2 convolutional encoder with m = 2 (standard example)

Convolutional codes are defined by their encoding schemes which are easy to
understand. However, the code created (i.e., the set of all encoded bit sequences)
is not as easy to analyze. In comparison, for the block codes first the code is
determined by using algebraic methods and then a suitable systematic encoder
is constructed.

The convolution operation (9.1.2) can also be described by half-sided infinite
matrices (i.e., the matrix continues indefinitely down and to the right). However,
instead, we will use the much easier description by polynomials in the next
section. A further generalization are non-linear convolutional codes, discussed in
Section 10.8, where non-linear operations can also be performed on the contents
of the shift register.

The definition of rate-k/n convolutional encoders can also be extended by
using feedback shift registers. This leads to an extremely complicated theory of
the algebraic structure of convolutional codes based on the properties of matri-
ces with polynomial quotients, i.e., vector spaces over rings and not over fields
[168]. For example, all convolutional codes can be systematically encoded with
feedback, whereas in Section 9.5 a systematic encoding without feedback will
turn out to perform not as well. The trellis coded modulation in Chapter 11 is
based on special convolutional codes of rate R = k/(k + 1), which will also be
discussed with systematic feedback encoders. However, for most applications it
is not really necessary to consider the algebraic theory of convolutional codes in
detail. Thus under this aspect the convolutional codes seem to be much easier
to understand than RS and BCH codes.

Restriction: In Chapters 8 and 9 only convolutional codes of rate R = 1/n
(i.e., k = 1) and linear encoders without feedback are considered simplifying the

9.2 Polynomial Description of Convolutional Codes 355

description and the decoding a great deal. However, the method of puncturing
convolutional codes as discussed in Section 8.3 still provides nearly all code rates
between 0 and 1.

9.2 Polynomial Description

The generator coefficients gν,µ in Definition 9.1 (κ is inapplicable for k = 1) are
associated to the generator polynomials

gν(x) =

m∑
µ=0

gν,µx
µ. (9.2.1)

The information bit sequence is characterized by a power series and the encoded
block sequence is characterized by a vector of power series:

u(x) =
∞∑
r=0

urx
ra(x) = (a1(x), . . . , an(x)), aν(x) =

∞∑
r=0

ar,νx
r. (9.2.2)

The convolutional encoder corresponds to the polynomial multiplication

(a1(x), . . . , an(x))︸ ︷︷ ︸
= a(x)

= u(x) · (g1(x), . . . , gn(x))︸ ︷︷ ︸
= G(x)

(9.2.3)

which is equivalent to

aν(x) = u(x)gν(x) for ν = 1, . . . , n. (9.2.4)

The matrix G(x) = (g1(x), . . . , gn(x)) is called a generator matrix although for
R = 1/n it is only a generator vector. The set of all code sequences (i.e., the
code) can be expressed by

C =
{
u(x)G(x)

∣∣∣ u(x) = ∞∑
r=0

urx
r, ur ∈ {0, 1}

}
. (9.2.5)

The convolutional code is linear and C is a vector space as it is for the block
codes. For a given generator matrix, the memory length is

m = max
1≤ν≤n

deg gν(x). (9.2.6)

Example 9.3. For the standard example, G(x) = (1 + x + x2, 1 + x2). The
following encoded bit sequence is associated with the information bit sequence

356 9. Description and Properties of Convolutional Codes

(1, 1, 0, 1, 0, 0)↔ u(x) = 1 + x+ x3:

a(x) = (a1(x), a2(x)) = u(x)G(x)

=
(
(1 + x+ x3)(1 + x+ x2), (1 + x+ x3)(1 + x2)

)
= (1 + x4 + x5, 1 + x+ x2 + x5)

↔ (11, 01, 01, 00, 10, 11).

A finite information bit sequence of length L leads to a finite sequence of encoded
blocks of length L+m, see also Subsection 9.3.1. �

In the subsequent sections, we will discuss some special classes of convo-
lutional codes including truncated codes to transform convolutional codes to
block codes (Section 9.3), punctured codes to generate convolutional codes with
higher code rates than 1/n (Section 9.4) and some other classes such as system-
atic codes and transparent codes (Section 9.5). These modifications and special
classes are of great practical importance in certain applications.

9.3 Truncated Convolutional Codes

Three methods for converting a convolutional code to a block code are described
in the following subsections.

9.3.1 Direct Truncation

The first method known as direct truncation generates a (Ln, L) block code as
follows: nach jeweils L information bits und somit Ln encoded bits wird das
linear shift register auf all-zeros zurückgesetzt. The resultant block code has
the same code rate 1/n as the original convolutional code. However, the code
has the disadvantage that there is little or none error protection afforded to the
last bits in each block. The information sequence u(x) = xL−1 of Hamming
weight 1 is mapped to the encoded sequence a(x) = (aL−1,0, . . . , aL−1,n−1)x

L−1

of weight less than or equal to n, so the minimum Hamming distance of the
resultant (Ln, L) block code is limited to the very small value of n even if L is
large. Deshalb hat diese Methode of direct truncation keine große Bedeutung
und wird hier nur der Vollständigkeit halber erwähnt.

Example 9.4. For the standard example G(x) = (1 + x + x2, 1 + x2), the
information bit sequence u = (1, 1, 0, 1) is mapped to the encoded bit sequence
a = (11, 01, 01, 00) in case of direct truncation. �

9.3 Truncated Convolutional Codes 357

9.3.2 Usual Method of Truncation (Zero Tail)

The second method to generate a block code from a convolutional code is known
as truncation (other widely used names are zero tail, block convolutional codes,
terminated codes or segmented codes). After L information bits, m known bits
(called tail bits) are inserted into the data stream of the information bits, for
this zeros are usually used. These L + m information bits only influence the
L+m code blocks a0, . . . ,aL−1+m and no further blocks. This also follows from
(9.2.4) and (9.2.6):

deg aν(x) ≤ deg u(x) +m.

The result is a ((L + m)n, L) block code which maps L information bits to
(L+m)n encoded bits. So, the code rate is reduced from R = 1/n to

Rtrunc =
L

L+m
· 1
n

(
<

1

n
= R
)
. (9.3.1)

For a large L this loss of rate is negligible. The advantage is a block structure
which, for example, avoids error propagation during decoding. Especially for
data with a frame structure, almost always truncated convolutional codes are
used in practice.

Example 9.5. We assume n = 2. Simplifying (9.1.2) by omitting κ leads to

ar,0 =

m∑
µ=0

g0,µur−µ, ar,1 =

m∑
µ=0

g1,µur−µ.

For the example of m = 2 and L = 4, the truncated convolutional code can be
written as a block encoder

(a0,0 a0,1|a1,0 a1,1|a2,0 a2,1|a3,0 a3,1|a4,0 a4,1|a5,0 a5,1)

= (u0, u1, u2, u3) ·




g0,0 g1,0 g0,1 g1,1 g0,2 g1,2 0 0 0 0 0 0
0 0 g0,0 g1,0 g0,1 g1,1 g0,2 g1,2 0 0 0 0
0 0 0 0 g0,0 g1,0 g0,1 g1,1 g0,2 g1,2 0 0
0 0 0 0 0 0 g0,0 g1,0 g0,1 g1,1 g0,2 g1,2




The generator matrix of the (12, 4) block code attains the following form for the
standard example with G(x) = (1 + x+ x2, 1 + x2)

G =




1 1 1 0 1 1 0 0 0 0 0 0
0 0 1 1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 1 1 0 0
0 0 0 0 0 0 1 1 1 0 1 1




and so the numerical example from Example 9.3 kann per matrix multiplica-
tion erneut nachvollzogen werden. Durch simple Berechnung aller 16 codewords
erweist sich die minimum distance of this block code als dmin = 5. �

Die Verwendung von matrices geschieht hier nur zum besseren Verständnis
und wegen der Analogie zu block codes, tatsächlich werden matrices zum prak-
tischen Umgang mit convolutional codes meistens nicht benötigt.

358 9. Description and Properties of Convolutional Codes

9.3.3 Tail Biting Codes

Die vorangehende method of truncation by insertion of zeros hat sehr große
praktische Bedeutung und bei großen Werten von L fällt die Verringerung der
code rate durch den factor of L/(L +m) nicht ins Gewicht. Wenn jedoch sehr
kurze information words mit einem block convolutional code übertragen wer-
den sollen, dann kann die nachfolgend dargestellte Technik als eine attraktive
Alternative angewendet werden.

The third method to generate a (Ln, L) block code from a convolutional
code is known as tail biting [202, 203]. Jeweils L information bits are mapped to
Ln encoded bits, im Gegensatz zu direct truncation wird das linear shift register
jetzt aber mit den last m information bits initialisiert. Also enthält das linear
shift register vor der Berechnung des ersten encoded blocks exakt die gleichen
information bits wie nach einem zusätzlichen Shift nach der Berechnung des
letzten blocks:

a0 = encoder(u0, uL−1, uL−2, . . . uL−m+1, uL−m)
a1 = encoder(u1, u0, uL−1, . . . uL−m+2, uL−m+1)

...
aL−1 = encoder(uL−1, uL−2, uL−3, . . . uL−m, uL−m−1)

The advantage of this method over the second method of truncation is that the
code rate remains unchanged. The advantage over the first method of direct
truncation is that all information bits are afforded the same amount of error
protection, however, as a disadvantage the decoder is more complex for tail
biting than for the standard convolutional code as we will see in Subsection
10.2.3.

Example 9.6. We assume again the standard example with n = 2 and m = 2.
For L = 4, the truncated convolutional code can be written as a block encoder
operation in the usual form of Definition 5.1

(a0,0 a0,1|a1,0 a1,1|a2,0 a2,1|a3,0 a3,1)

= (u0, u1, u2, u3) ·




g0,0 g1,0 g0,1 g1,1 g0,2 g1,2 0 0
0 0 g0,0 g1,0 g0,1 g1,1 g0,2 g1,2

g0,2 g1,2 0 0 g0,0 g1,0 g0,1 g1,1
g0,1 g1,1 g0,2 g1,2 0 0 g0,0 g1,0




The generator matrix of this (8, 4) block code attains the following form for the
standard example

G =




1 1 1 0 1 1 0 0
0 0 1 1 1 0 1 1
1 1 0 0 1 1 1 0
1 0 1 1 0 0 1 1




9.4 Truncated Convolutional Codes 359

Für die information bit sequence u = (1, 1, 0, 1) ergibt sich die encoded bit
sequence a = (01, 10, 01, 00), für das Beispiel u = (1, 0, 1, 0) ergibt sich jedoch
a = (00, 10, 00, 10) und somit beträgt die minimum distance of the resultant
(8, 4) block code with L = 4 only dmin = 2. Für den (12, 6) block code with
L = 6 gilt dmin = 3 und für den (16, 8) block code with L = 8 gilt dmin = 4. Der
maximale Wert dmin = 5 wird für den (20, 10) block code with L = 10 erreicht
und bei größerem L erhöht sich dmin nicht weiter. �

Viele weitere Details zu tail biting of convolutional codes finden sich in [66]
und ein survey of new bounds and search results in [156]. For the truncation
method, the information bit stream is manipulated. Manipulations in the en-
coded bit stream lead to the following class of codes.

9.4 Punctured Convolutional Codes

9.4.1 The Basic Principle

Each P consecutive code blocks are combined to a group. Of the nP encoded
bits in this group, l encoded bits are deleted (punctured) and not transmitted.
Therefore, P information bits are mapped to nP − l code bits. So, the code rate
is increased from R = 1/n to

Rpunc =
P

nP − l

(
>

1

n
= R
)
. (9.4.1)

Of course, l < (n − 1)P must be valid to guarantee a code rate smaller than 1
to be able to reconstruct the information bits from the encoded bits.

The value P is called puncturing period and the rate-1/n code is called
mother code. The positions of those encoded bits to be punctured are fixed in a
puncturing pattern. With increasing P nearly all code rates between 1/n and 1
can be achieved. Examples for a mother code with R = 1/2 are shown in Table
9.2. In particular for l = P − 1, Rpunc = P/(P + 1).

Table 9.1. Code rates Rpunc for punctured convolutional codes (from a mother code
of rate R = 1/2)

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
P = 2 2/4 2/3
P = 3 3/6 3/5 3/4
P = 4 4/8 4/7 4/6 4/5
P = 8 8/16 8/15 8/14 8/13 8/12 8/11 8/10 8/9

In practice, instead of using rate-k/n codes as in Definition 9.1 punctured
codes are mostly used. A punctured rate-2/3 code with a rate-1/2 mother code

360 9. Description and Properties of Convolutional Codes

is not as good as a non-punctured rate-2/3 code, however, with the Viterbi algo-
rithm the puncturing method causes no extra effort for the decoding procedure.
The complexity of the decoding algorithm is only determined by the mother
code und not by the puncturing pattern, this will be shown in Section 10.?.

Usually a code with large P is better, hence, R = 4/6 is not quite as good
as R = 8/12. There are extensive tables of the best punctured codes, e.g., in
[183, 199]. However, the results hardly vary with the puncturing length and
the other constraints: on the one hand the selection of the mother code and the
puncturing scheme can be optimized for a specific code rate or on the other hand
one can optimize to a whole code family with various rates and an unchanged
mother code.

9.4.2 Rate Compatible Punctured Convolutional
(RCPC) Codes

Of great practical importance are the rate compatible punctured convolutional
(RCPC) codes, introduced by J.Hagenauer [184], where a code family is derived
with various rates from a mother code by embedding the high-rated codes in
the low-rated codes. Codes with a higher rate are only created by further punc-
turings of codes with a lower rate, hence, all bits used for higher rates are also
used for lower rates. One can switch between various code rates without consid-
erable additional effort which is obvious for the encoder but will be proven for
the decoder in Section 10.?. The significant advantage of RCPC codes is that
the code rate can be switched at any time without having any negative effects
on the distance properties around the point of switching.

Table 9.2. Complete puncturing table for an RCPC code
(rate-1/4 mother code with m = 4 and P = 8)

Puncturing table Rpunc

1111 0111 1000 1000 0000 0000 0000 0000 8/9
1111 1111 1000 1000 0000 0000 0000 0000 8/10
1111 1111 1010 1010 0000 0000 0000 0000 8/12
1111 1111 1110 1110 0000 0000 0000 0000 8/14
1111 1111 1111 1111 0000 0000 0000 0000 8/16
1111 1111 1111 1111 1000 1000 0000 0000 8/18
1111 1111 1111 1111 1100 1100 0000 0000 8/20
1111 1111 1111 1111 1110 1110 0000 0000 8/22
1111 1111 1111 1111 1111 1111 0000 0000 8/24
1111 1111 1111 1111 1111 1111 1000 1000 8/26
1111 1111 1111 1111 1111 1111 1010 1010 8/28
1111 1111 1111 1111 1111 1111 1110 1110 8/30
1111 1111 1111 1111 1111 1111 1111 1111 8/32

9.4 Truncated Convolutional Codes 361

ur ur-1 ur-2 ur-3 ur-4

Rpunc

1000 1000 8/9

1111 1111 8/30
1010 1010 8/12

0000 0000 8/9

1111 1111 8/30
0000 0000 8/12

1111 0111 8/9

1111 1111 8/30
1111 1111 8/12

0000 0000 8/9

1110 1110 8/30
0000 0000 8/12

Puncturing pattern
per polynomial

ur

ar,1

ar,2

ar,3

ar,4

Figure 9.3. RCPC encoder with three exemplary code rates
(rate-1/4 mother code with m = 4 and P = 8)

An example for RCPC codes is shown in Table 9.2 [144, 184], where rate
compatible punctured codes with rates from 8/9 to 1/4 are derived from a rate-
1/4 mother code with the generator matrix

G(x) = (1 + x3 + x4, 1 + x+ x2 + x4, 1 + x2 + x3 + x4, 1 + x+ x3 + x4).

A zero in the puncturing pattern indicates puncturing. In Table 9.2 the first
group of 8 bits in the puncturing table refers to first generator polynomial, the
second group to the second polynomial, and so on. The RCPC encoder for three
exemplary code rates is shown in detail in Figure 9.3, although all necessary
information is already contained in Table 9.2. For code rates greater than or
equal to 1/2 only the two first polynomials from G(x) are used.

Two important applications for RCPC codes are discussed below.

• Transmission channels with varying quality where the code rate is adapted
by an ARQ method (if a feedback channel is available) according to the
channel properties. Typically, for a good channel only the punctured code is
used and only if the channel quality is deteriorating the punctured positions
are transmitted as well to raise the correctability.

• Data sources where the different bits within a frame have varying importance
and therefore require a varying error protection. This is also called unequal

362 9. Description and Properties of Convolutional Codes

error protection (UEP) coding . An interesting application is the source
encoding of speech in digital mobile radio systems (see Sections 12.3 and
12.4 for more details).

Figure 9.4 shows the bit-error rate of an RCPC code with four code rates 8/10,
8/12, 8/14 and 8/16 with puncturing pattern according to Table 9.2. For these
specific code rates, the puncturing period reduziert sich effektiv von P = 8 auf
P = 4, da die four entsprechenden puncturing patterns in Table 9.2 jeweils
consist of two repetitions of a pattern of length four.

0 50 100 150 200 250 300 350
10

−4

10
−3

10
−2

10
−1

10
0

Information bits

B
it−

er
ro

r
ra

te

R
punc

=8/10 R
punc

=8/12 R
punc

=8/14 R
punc

=8/16

E
b
/N

0
=1.0 dB E

b
/N

0
=1.8 dB E

b
/N

0
=2.4 dB E

b
/N

0
=3.0 dB

Figure 9.4. Performance of an RCPC oder with four code rates (at Ec/N0 = 0 dB)

In Figure 9.4 wird jede der vier code rates auf eine Gruppe von 96 infor-
mation bits angewendet (wobei in der letzten Gruppe 4 terminating zeros en-
thalten sind), so daß die insgesamt 384 information bits of a frame are mapped
to 120 + 144 + 168 + 384 = 624 encoded bits. Die bit-error rate in Figure 9.4
wird durch Viterbi decoding (siehe next chapter) with soft decisions gewonnen.
Dabei wird Ec/N0 = 0 dB vorausgesetzt so daß die in Figure 9.4 angegeben
Eb/N0 Werte für die einzelnen code rates resultieren. Die bit-error rate für jedes
einzelne der 384 information bits wurde durch Mittelung über 80000 frames
geschätzt, insgesamt wurden also 384 · 80000 = 30.72 Mbit simuliert. Die deut-
lich erkennbaren Oszillationen in der bit-error rate bei der ersten und dritten

9.5 Further Specific Classes of Convolutional Codes 363

code rate entsprechen exakt der puncturing period of 4 und bei der zweiten code
rate der puncturing period of 2. Dagegen sind bei der vierten code rate ohne
puncturing einerseits keine Oszillationen mehr zu erwarten, andererseits wären
sie hier aber auch nicht mehr erkennbar da die quasi-random inaccuracies als
Folge einer zu kurzen Simulationsdauer (..run) überwiegen. Nebenbei bemerkt
findet sich die averaged bit-error rate bei R = 1/2 auch in Table 10.8.

Der besondere Vorteil des RCPC Prinzips ist daß die bit-error rate einen
ziemlich glatten Verlauf around the point of rate switching aufweist. Wenn
dagegen the puncturing pattern von high-rated codes nicht in diejenigen der
low-rated codes embedded wären, dann würde die bit-error rate im Bereich der
rate transitions kurzzeitig erheblich ansteigen.

9.5 Further Specific Classes of Convolutional

Codes

9.5.1 Systematic Codes

In a systematic encoder at least one component in the code block corresponds
to the information bit.

Where block codes are nearly exclusively systematically encoded this is not
possible for convolutional codes if the linear combinations in Definition 9.1 are
not extended by feedbacks. Some of the best convolutional codes can not be
systematically encoded without feedback which will be shown in Section 9.5.

9.5.2 Transparent Codes

For every encoded bit sequence in transparent codes the binary complement
must be an encoded bit sequence as well (this is of course not necessary for the
first m code blocks).

Since the all-zero sequence is a code sequence then so is the all-one sequence.
The code is transparent if and only if every linear combination consists of an odd
number of information bits or every generator polynomial has an odd weight.
With this definition an all-one information sequence leads to an all-one code
sequence. Most of the good convolutional codes are not transparent, however,
the so-called industry standard code with m = 6 and R = 1/2 as in Table 9.3a
and R = 1/3 as in (9.5.2) is transparent.

The advantage of transparent codes is that if there is a change of polarity
or a 180 degree phase shift of the physical channel, the code remains invariant.
The inversion of the encoded bits corresponds to the inversion of the information
bits. In combination with the differential precoding [25, 112, 144] the result is
a rotational invariance. This subject will be discussed in detail in Section 11.8.

364 9. Description and Properties of Convolutional Codes

9.6 Catastrophic Codes and Encoder Inverse

Example 9.7. Consider the encoder shown in Figure 9.3 of a rate-1/2 code with
G(x) = (1+x, 1+x2) which is similar to the standard example. The all-one infor-
mation sequence results in the encoded sequence a(x)↔ (11, 01, 00, 00, 00, . . .).
This can also be derived by using u(x) = 1 + x + x2 + x3 + · · · = 1/(1− x) in

u(x)G(x) =
1

1− x

(
1 + x, (1 + x)2

)
= (1, 1 + x).

+

+

ur–1 ur–2ur

ar,1

ar,2

ur

Figure 9.5. A catastrophic rate-1/2 convolutional encoder

Thus the all-one and the all-zero sequences there are two information sequences
of infinite Hamming distance with corresponding code sequences which only
differ in three positions. Therefore three errors during transmission are enough
to produce an infinite number of errors during decoding (snowball effect on error
propagation). Such an encoder is called catastrophic. Due to the linearity of the
code, an equivalent criterium for catastrophic codes can be expressed by the
Hamming weights instead of the distances. �

There is a very simple easily provable criterion to decide whether a convo-
lutional code is catastrophic or not:

Theorem 9.1. The definition of a non-catastrophic encoder is that every in-
formation sequence of infinite weight implies an encoded sequence of infinite
weight or equivalently every finite encoded sequence implies a finite information
sequence. This is equivalent to the generator polynomials not having a common
divisor:

GCD
(
g1(x), . . . , gn(x)

)
= 1. (9.6.1)

So if the factorization of the generator polynomials into irreducible factors pro-
duces a common divisor, we have a catastrophic encoder (as in Example 9.4).

If the greatest common divisor consists only of powers of x, we only have a
superfluous delay in the encoder.

9.6 Catastrophic Codes and Encoder Inverse 365

Proof. “Non-catastrophic =⇒ GCD=1”: we will use the method of contradic-
tion, i.e., we assume that there exists a common divisor p(x) �= 1,

G(x) =
(
p(x)g̃1(x), . . . , p(x)g̃n(x)

)
.

The constant term in p(x) is not zero, otherwise all generator polynomials would
contain the factor x and the encoding would be pointlessly delayed. With a little
calculation,

u(x) =
1

p(x)
=

∞∑
r=0

urx
r

turns out to be a power series without negative powers. Then again u(x) cannot
be a polynomial because otherwise the product of two polynomials would be 1,
which is impossible according to the degree formula. Thus u(x) is a sequence
of infinite weight. If interpreted as a information sequence we obtain the code
sequence

a(x) = u(x)G(x) =
(
g̃1(x), . . . , g̃n(x)

)
of finite weight. This is a contradiction to the presumption of the encoder being
non-catastrophic, therefore p(x) = 1.

“Non-catastrophic ⇐= GCD=1”: in general, the greatest common divisor
of several variables can be represented by a linear combination of these variables
(see the Euclidean Algorithm, Theorem A.8). Thus there exist polynomials
f1(x), . . . , fn(x) with

n∑
ν=1

fν(x)gν(x) = GCD
(
g1(x), . . . , gn(x)

)
= 1. (9.6.2)

So the corresponding information sequence of the code sequence a(x) =(
a1(x), . . . , an(x)

)
= u(x)

(
g1(x), . . . , gn(x)

)
can be expressed by

n∑
ν=1

aν(x)fν(x) =
n∑

ν=1

u(x)gν(x) · fν(x)

= u(x) ·
n∑

ν=1

gν(x)fν(x) = u(x).

If a(x) is of finite weight, then so is u(x), thus the encoder is non-catastrophic.
�

Theorem 9.1 can be generalized to all convolutional codes of rate R = k/n as

follows. For the (k, n)-dimensional generator matrix there are

(
n

k

)
possibilities

to choose k out of n columns. So

(
n

k

)
(k, k)-dimensional polynomial matrices

366 9. Description and Properties of Convolutional Codes

can be formed of which we are to calculate the determinants. In extension of
(9.4.1) these determinants are not allowed to have a common divisor.

The polynomials f1(x), . . . , fn(x) in (9.4.2) form an encoder inverse, which
produces the information sequence of an encoded sequence. This will be ex-
plained in detail by the following example. However, the encoder inverse is not
a decoder since it can not process code sequences with error patterns and it
can not deal with soft decisions. The Viterbi decoder contains the encoder in-
verse implicitly, so that the polynomials f1(x), . . . , fn(x) need not be known in
practice.

Example 9.8. For G(x) = (g1(x), g2(x)) = (1 + x + x2, 1 + x2), g1(x) is
irreducible, thus the standard example is a non-catastrophic encoder. For
(f1(x), f2(x)) = (x, 1 + x),

f1(x)g1(x) + f2(x)g2(x) = 1

is easily verifiable. Thus

û(x) = a(x)

(
x

1 + x

)
= u(x)

(
1 + x+ x2, 1 + x2

)(x
1 + x

)
= u(x).

This relation is demonstrated in Figure 9.4. Note the recursive description of
encoder and encoder inverse

+

ur–1 ur–2ur
ur

ar–1,2ar,2

+

+

+

ûr = ur

ar–1,1ar,1
ar,1

ar,2

Encoder Encoder inverse

Figure 9.6. Transparent concatenation of encoder and encoder inverse (standard
example)

encoder: ar,1 = ur + ur−1 + ur−2, ar,2 = ur + ur−2

encoder inverse: ûr = ar−1,1 + ar,2 + ar−1,2,

which can be verified by ûr = (ur−1+ur−2+ur−3)+(ur+ur−2)+(ur−1+ur−3) = ur.
�

9.7 Distance Properties and Optimum Convolutional Codes 367

Example 9.9. For G(x) = (g1(x), g2(x)) = (1 + x, 1 + x2) = (1 + x)(1, 1 + x),
we have a catastrophic encoder. There are no two polynomials f1(x), f2(x) with
f1(x)g1(x) + f2(x)g2(x) = 1, since

f1(x)g1(x) + f2(x)g2(x) = (1 + x) ·
(
f1(x) + f2(x)(1 + x)

)
︸ ︷︷ ︸

polynomial

= 1

is impossible according to the degree formula. �

9.7 Distance Properties and Optimum

Convolutional Codes

9.7.1 The Free Distance and Tables of Rate-1/2 and

Rate-1/3 Codes

The performance of a block code is mainly expressed by the minimum distance,
i.e., by the minimum Hamming weight of all codewords. A corresponding char-
acterization for convolutional codes is given in the following definition.

Definition 9.2. The minimum free distance df (otherwise also denoted dfree or
d∞) of a convolutional code is defined as the minimum Hamming weight of all
code sequences:

df = min
{
wH(u(x)G(x))

∣∣∣ u(x) = ∞∑
r=0

urx
r �= 0

}
. (9.7.1)

Except for punctured codes we can always set u0 = 1. Two code sequences always
differ in at least df positions. A convolutional code is called optimum, if df is
the maximum over all other convolutional codes with the same code rate and the
same memory length m.

In Subsections 9.3.1 and 9.3.2 hatten convolutional codes betrachtet, die
zugleich auch spezielle block codes sind. Für diese Fälle gilt natürlich df =
dmin. Zu beachten ist aber daß mit größerer block length die minimum distance
dmin nicht weiter anwächst, wie es eigentlich bei class of block codes with good
performance der Fall wäre. Hieraus darf man aber nicht den Schluss ziehen daß
convolutional codes (egal ob mit oder ohne truncation) weniger gut als block
codes seien.

Table 9.3a shows some optimum convolutional codes with their generator
polynomials for rates R = 1/2 and R = 1/3 and memory lengths m = 2 . . . 6.
In the extended Table 9.3b with m = 2 . . . 16 the generator polynomials are
octal encoded. The octal encoding is not unique throughout the literature, e.g.,

368 9. Description and Properties of Convolutional Codes

the polynomial 1 + x + x3 is described by (15)octal = 001 101 as well as by
(64)octal = (110 100), however, the octal decoding is unique. For m ≤ 6 the
Tables 9.3a and 9.3b are identical.

Table 9.3a. Generator polynomials for R = 1/2 and R = 1/3 optimum
convolutional codes with m = 2 . . . 6 (from [79])

g1(x) g2(x) g3(x) df
1 + x+ x2 1 + x2 5
1 + x+ x3 1 + x+ x2 + x3 6
1 + x3 + x4 1 + x+ x2 + x4 7
1 + x+ x3 + x5 1 + x2 + x3 + x4 + x5 8
1 + x2 + x3 + x5 + x6 1 + x+ x2 + x3 + x6 10
1 + x+ x2 1 + x2 1 + x+ x2 8
1 + x+ x3 1 + x+ x2 + x3 1 + x2 + x3 10
1 + x2 + x4 1 + x+ x3 + x4 1 + x+ x2 + x3 + x4 12
1 + x2 + x4 + x5 1 + x+ x2 + x3 + x5 1 + x3 + x4 + x5 13
1 + x2 + x3 + x5 + x6 1 + x+ x4 + x6 1 + x+ x2 + x3 + x4 + x6 15

Table 9.3b. Generator polynomials in octal notation for R = 1/2 and R = 1/3
optimum convolutional codes with m = 2 . . . 16 (from [79])

m R = 1/2 R = 1/3
g1(x) g2(x) df g1(x) g2(x) g3(x) df

2 5 7 5 5 7 7 8
3 64 74 6 54 64 74 10
4 46 72 7 52 66 76 12
5 65 57 8 47 53 75 13
6 554 744 10 554 624 764 15
7 712 476 10 452 662 756 16
8 561 753 12 557 663 711 18
9 4734 6624 12 4474 5724 7154 20
10 4672 7542 14 4726 5562 6372 22
11 4335 5723 15 4767 5723 6265 24
12 42554 77304 16 42554 43364 77304 24
13 43572 56246 16 43512 73542 76266 26
14 56721 61713 18
15 447254 627324 19
16 716502 514576 20

The transition from R = 1/2 to R = 1/3 not only adds another generator
polynomial g3(x) but may also change g1(x) and g2(x). The optimum codes are
not always unique, e.g., for R = 1/2 and m = 5 we also have the generator
matrix

(53, 75)octal = (1 + x2 + x4 + x5, 1 + x+ x2 + x3 + x5).

9.7 Distance Properties and Optimum Convolutional Codes 369

Most of the codes listed here were found by Odenwalder and Larson by
computer search in 1970. Codes with other rates, systematic codes and also
transparent codes can be found in [17, 25, 95, 114, 128, 144, 151] and more
completely in [29, 66, 75, 79, 126, 147]. The distance properties of tail biting
codes are considered in detail in [66].

9.7.2 The Industry Standard Code

Tables 9.3a and 9.3b contain the Industry Standard Code (171, 133)octal for R =
1/2 andm = 6 which is one of the most important convolutional codes, nowadays
implemented in encoder/decoder chips by various manufacturers such as [216].
Also based on the industry standard code is the so-called pragmatic trellis coded
modulation which will be discussed in Section 11.11. For the rate-1/3 version
of the industry standard code, the following generator polynomials are given in
[216]

(171, 133, 165)octal =(1 + x+ x2 + x3 + x6, 1 + x2 + x3 + x5 + x6,

1 + x+ x2 + x4 + x6), (9.7.2)

where the first two generator polynomials of the rate-1/2 code have been copied
without changes. The industry standard code is also used with puncturing to
generate various code rates Rpunc = P/(P + 1) between 1/2 and 16/17. The
best puncturing patterns for the most important code rates are shown in Table
9.4.

Table 9.4. Best puncturing patterns for the industry standard code (from [216])

Code rate Puncturing period Puncturing pattern for the
Rpunc P (171, 133)octal rate-1/2 code

(0 = punctured encoded bit)

2/3 2
1 0
1 1

3/4 3
1 0 1
1 1 0

4/5 4
1 0 0 0
1 1 1 1

5/6 5
1 0 1 0 1
1 1 0 1 0

7/8 7
1 0 0 0 1 0 1
1 1 1 1 0 1 0

15/16 15
1 0 0 1 1 0 1 0 0 1 0 1 1 0 1
1 1 1 0 0 1 0 1 1 0 1 0 0 1 0

The application of the puncturing patterns from Table 9.4 is illustrated with
an example for P = 3. The encoder first generates the sequence ar = (ar,1, ar,2)

370 9. Description and Properties of Convolutional Codes

which is ordered as

a1,1 a2,1 a3,1 a4,1 a5,1 a6,1

· · · · · ·
a1,2 a2,2 a3,2 a4,2 a5,2 a6,2

Prior to transmission all bits in the boxes are punctured or deleted and not
transmitted. For this example, two out of six bits are deleted in each pattern, so
only the sequence a1,1 a1,2 a2,2 a3,1 a4,1 a4,2 a5,2 a6,1 is actually transmitted
and the code rate is Rpunc = 3/4 of course.

9.7.3 Bounds on the Free Distance

For the information sequence u(x) = 1 we obtain the code sequence a(x) = G(x)
providing us with a general upper bound for the free distance:

df ≤ wH(G(x)) =

n∑
ν=1

wH(gν(x)) (9.7.3)

≤ n · (m+ 1). (9.7.4)

Often there is equality in the first inequality, whereas the second inequality can
never be tight for non-catastrophic codes. For a systematic rate-1/2 code we
have G(x) = (g1(x), 1) and therefore

df ≤ m+ 2.

Since Tables 9.3a and 9.3b show larger free distances for the optimum codes,
optimum codes can not be systematic.

Example 9.10. (1) For the standard example with G(x) = (1+x+x2, 1+x2),
df ≤ 5 according to (9.5.3). In Subsection 9.7.2, we will show that df = 5.

(2) For G(x) = (1 + x + x2, 1 + x + x2) (9.5.3) implies df ≤ 6, however, it
is a catastrophic encoder and we only have df = 4, since u(x) = 1 + x generates
a(x) = (1 + x3, 1 + x3). Thus there can not be a rate-1/2 code with df = 6.

(3) For the catastrophic code with G(x) = (1 + x, 1 + x2), we have df = 3
according to Example 9.4, however, when restricting to finite sequences we have
df = 4 for the truncated code. �

Theorem 9.2 (Heller Bound). The minimum free distance df of a rate-1/n
convolutional code with memory length m satisfies

df ≤ min
l≥1

[
(l +m)n

2(1− 2−l)

]
. (9.7.5)

The asymptotic Heller bound for m→∞ satisfies

lim
m→∞

df ≤ m · n
2

. (9.7.6)

9.7 Distance Properties and Optimum Convolutional Codes 371

Proof. We consider information sequences of length l with m truncating zeros.
The corresponding encoded sequences constitute a ((l+m)n, l, dmin)2 block code.
The application of the Plotkin bound from Theorem 4.11 implies

df = dmin ≤ (l +m)n · 2l−1

2l − 1

and the proof of (9.5.5) is complete. The asymptotic bound (9.5.6) follows
immediately with l = 1. �

The Heller bound proves to be very tight in comparison with the codes from
Table 9.3. This is also demonstrated with Figure 9.5 (for the non-punctured
rates from 1/6 to 1/2), where the difference between the Heller bound and the
exact minimum free distance is very small. For l = 1, (9.5.5) is identical to
(9.5.4).

2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

Memory length m

M
in

im
um

 fr
ee

 d
is

ta
nc

e
d f

R=3/4

R=2/3

R=1/2

R=1/3

R=1/4

R=1/5

R=1/6
Heller bound
exact

Figure 9.7. Minimum free distance versus memory length for various code rates

Figure 9.5 or the asymptotic result (9.5.6) indicate that the minimum free
distance is approximately proportional to the memory length and is also strongly
dependent on the code rate, of course. However, the free distance does not always
continuously increase with m, e.g., for R = 1/2 increasing from m = 6 to m = 7
is of no advantage at all but will double the decoder complexity. The codes

372 9. Description and Properties of Convolutional Codes

with rates R = 2/3 and R = 3/4 in Figure 9.5 are punctured codes which are
mentioned in [183]. Other tables of punctured codes have slightly different free
distances depending on the criteria chosen for punctured codes as explained in
Subsection 9.3.2.

For the minimum distance of the block code emerging from a truncated con-
volutional code, dmin = df . However, truncated convolutional codes are asymp-
totically bad block codes according to Section 3.4, since for a constant code rate
the minimum distance remains constant and thus the distance rate converges
to zero for increasing block length. Nevertheless, the convolutional codes still
prove to be very powerful. The Definition 9.2 of optimum codes was made in
anticipation of ML decoding with the Viterbi algorithm (see Chapter 10). For
other decoding schemes different distance properties are the criteria for the se-
lection of the code. A detailed overview of further distance definitions is given
in [29].

Until now, we have described convolutional codes and their encoders by
polynomials or shift registers. To describe the code itself we will introduce
the trellis diagram (important for ML decoding) in Section 9.6 and the state
transition diagram (important for the calculation of the distance properties) in
Section 9.7.

9.8 The Trellis Diagram

The description of a convolutional code by a trellis diagram is the basic idea for
the decoding. The trellis diagram consists of repeated trellis segments, which
uniquely correspond to the convolutional encoder.

9.8.1 Trellis Segments

According to (9.1.1), the current code block ar is a function of the current
information bit ur and the previous m information bits ur−1, . . . , ur−m. The
binary m-tuple (ur−1, . . . , ur−m) is called a state. The values of these 2m states
are denoted ζ1, . . . , ζ2m where ζ1 = (0, . . . , 0) is the zero state. The state at
time r (referring to the information bits or the code blocks) is denoted zr ∈
{ζ1, . . . , ζ2m}. The current information bit and the current state deliver the
current code block and the next state:

ar = encoder(ur, zr) , zr+1 = shift function(ur, zr). (9.8.1)

Example 9.11. For the standard example with G(x) = (1+x+x2, 1+x2) the
states are numbered as ζ1 = 00, ζ2 = 10, ζ3 = 01, ζ4 = 11, leading to the state

9.8 The Trellis Diagram 373

tables

Present Output
state bits
ar ur = 0 ur = 1

zr = 00 00 11
zr = 10 10 01
zr = 01 11 00
zr = 11 01 10

Present Next
state state
zr+1 ur = 0 ur = 1

zr = 00 00 10
zr = 10 01 11
zr = 01 00 10
zr = 11 01 11

In Figure 9.6 these tables are represented by a trellis segment. The branches
between the states are labeled with ur,ar. The generator matrix only influences
the ar labeling but not the state transitions. �

zr zr+1

ur

ζ4 = 11

ζ3 = 01

ζ2 = 10

ζ1 = 00

ζ4 = 11

ζ3 = 01

ζ2 = 10

ζ1 = 00

Figure 9.8. Trellis segment for the standard example

A trellis segment always has 2m states. For rate-1/n codes, there are always
two branches leaving each state zr = ζi and two branches arriving at each state
zr+1 = ζj. If the states are numbered as inverse dual numbers, we obtain the
symmetry shown in Figure 9.7.

All in all there are four branches from ζi and ζi+2m−1 towards ζ2i−1 and ζ2i.
The labeling of the branches with ur can be omitted, since the upper outgoing
branches always correspond to ur = 0 and the lower outgoing branches always
correspond to ur = 1. In ζi and ζi+2m−1 the first part u = (ur−1, . . . , ur−m+1) is
constant. During the transition from zr to zr+1, ur−m drops out and u forms
the last part of ζ2i−1 and ζ2i. This process will become even more apparent for
the more complicated case of m = 4 displayed in Figure 9.8.

For rate-k/n convolutional codes with a memory length of m there are 2k

branches leaving and 2k branches arriving at each of the 2m states. Thus there

374 9. Description and Properties of Convolutional Codes

ζi

zr zr+1

ur

ζ

ζ2i–1 = (ur=0,u)

ζ2ii+2m–1

= (u,ur–m=0)

= (u, ur–m=1) = (ur=1,u)

ur = 0

ur = 1

where u = (ur–1,...,ur–m+1)

Figure 9.9. The elementary part of the general trellis segment

are 2m+k branches per trellis segment. Corresponding examples for such more
complex trellis segments will be discussed in Chapter 11.

9.8.2 Complete Trellis Diagrams

A complete trellis diagram (or simply called trellis) is constructed by repeated
identical trellis segments placed behind each other. Since the shift register is
initialized with zeros, the trellis diagram has m incomplete starting segments
corresponding to the encoder’s departure from the zero state. For truncated
codes, there are also m incomplete final segments corresponding to the encoder’s
return to the zero state. States are also called nodes. The trellis diagram is a
directed graph with a start node and a final node. A sequence of branches
throughout the trellis is called a path. For non-truncated codes the paths can
also be of infinite length.

Example 9.12. The trellis diagram for the standard example is shown in Figure
9.9 where it is terminated after 4 information bits. The branches are labeled
with the code blocks. The thick lined path corresponds to

information sequence 1, 1, 0, 1, (0, 0)

encoded sequence 11, 01, 01, 00, 10, 11

state sequence ζ1, ζ2, ζ4, ζ3, ζ2, ζ3, ζ1.

The same code sequence was already calculated by the generator matrix in
Example 9.3. �

For punctured codes the labeling of the branches with the code blocks is
actually time-variant (i.e., varying from segment to segment), but in Section

9.8 The Trellis Diagram 375

ζ1 = 0000

ζ2 = 1000

ζ3 = 0100

ζ4 = 1100

ζ5 = 0010

ζ6 = 1010

ζ7 = 0110

ζ8 = 1110

ζ9 = 0001

ζ10 = 1001

ζ11 = 0101

ζ12 = 1101

ζ14 = 1011

ζ15 = 0111

ζ16 = 1111

ζ13 = 0011

ζ1 = 0000

ζ2 = 1000

ζ3 = 0100

ζ4 = 1100

ζ5 = 0010

ζ6 = 1010

ζ7 = 0110

ζ8 = 1110

ζ9 = 0001

ζ10 = 1001

ζ11 = 0101

ζ12 = 1101

ζ14 = 1011

ζ15 = 0111

ζ16 = 1111

ζ13 = 0011

zr = (ur–1, ur–2, ur–3, ur–4) zr+1 = (ur, ur–1, ur–2, ur–3)
ur

Figure 9.10. Trellis segment for a memory length of m = 4

10.4 we will see that the puncturing pattern can be very easily incorporated into
the decoding algorithm.

The information sequence, code sequence and state sequence are uniquely
related to each other. By using the method “paths through the trellis” the code
is a lot easier to overlook than when using the generator matrix. A path of finite
length through the trellis is called a fundamental path (or detour path) which
starts and ends at the zero state but does not touch it in between. The length
of the fundamental path is at least m + 1 segments or (m + 1)n encoded bits.
Every path in the terminated trellis consists of a finite sequence of fundamental
paths and all-zero branches.

376 9. Description and Properties of Convolutional Codes

1
ζ1 = 00

ζ2 = 10

ζ3 = 01

ζ4 = 11

00 00 00
11

00
11

00
11

00
11

11 11
11
00

11
00

10
10
01

10
01

10
01

01
10

01
1001

incomplete segments incomplete segments

1 0 1 0 0

u0 u1 u2 u3 u4 u5z0 z1 z2 z3 z4 z5 z6

Figure 9.11. Trellis diagram for the standard example

The free distance df was defined as the minimum Hamming weight of all
paths beginning at the zero state in the trellis. Of course, the Hamming weight
refers to the labeling of the branches with the code blocks. A truncated code
and a non-truncated code have the same free distance.

Theorem 9.3. For non-catastrophic codes the free distance can be determined
from the fundamental paths alone.

Proof. We are to show that the minimum weight of all code sequences is
only achieved for a finite information sequence. Assume the contrary: let there
be an information sequence of infinite weight with a code sequence weight ≤
wH(G(x)) <∞. However, this is not possible for non-catastrophic codes. �

This theorem connects the expressions catastrophic, free distance and fun-
damental path. So for the determination of df it is sufficient only to consider
paths of finite length and it does not matter where the path begins. Hence,
Figure 9.9 implies that df = 5 for the standard example. For catastrophic codes
there are paths of infinite length and finite weight which do not touch the zero
state. For non-catastrophic codes this is impossible.

9.9 State Diagrams and Weight Enumerators 377

9.9 State Diagrams and Weight Enumerators

9.9.1 The State Transition Diagram

With the trellis diagram all code properties are already contained in only one
segment. The state transition diagram (also called signal flowchart) is a weighted
directed graph (also called digraph) which is constructed from a trellis segment
by identifying the nodes in step r + 1 with the ones in step r.

The method will become more apparent when looking at the state transition
diagram for the standard example shown in Figure 9.10. A solid branch corre-
sponds to ur = 0 and a dotted branch corresponds to ur = 1. The branches are
labeled again with the code blocks.

ζ2 = 10

ζ1 = 00 ζ4 = 11

ζ3 = 01

00 10

ur = 0

ur = 1

Figure 9.12. State transition diagram for the standard example

In general, there are 2m states with 2m+1 branches for rate 1/n-codes. The
possible code sequences correspond to the possible state sequences in the state
transition diagram. The state transition diagram is a finite deterministic au-
tomat (also called Mealy automat). Usually, there is a loop at the zero state
with ur = 0 and ar = 0 . The diagram is always connected, since every state
can be reached from every other state with an appropriate information sequence.
The generator matrix only influences the labeling of the branches.

The fundamental paths are clearly visible in the state transition diagram.
Observe that a fundamental path starts at the zero state, leaves the zero state
and ends when it returns to the zero state. According to Theorem 9.2, if the
encoder is non-catastrophic, the minimum weight of the code sequence of all
fundamental paths corresponds to the free distance.

378 9. Description and Properties of Convolutional Codes

9.9.2 The Weight Enumerator Function for

Convolutional Codes

To calculate the error probability not only the free distance but also further
weight parameters are required, similar as for the block codes. For convolutional
codes it is necessary to have an overview of the complete distance structure of the
code, i.e., all fundamental paths should be described by an analytical expression.

Definition 9.3. Let t(d, i, j) be the number of fundamental paths which start at
step zero with

d = Hamming weight of the sequence of encoded blocks

i = Hamming weight of the information sequence

j = length of the fundamental path,

where the length of the fundamental path is measured in code blocks or equiva-
lently in information bits. The t(d, i, j) are called the complete path enumera-
tors. The formal power series of D, I, J

T (D, I, J) =
∞∑

d=df

∞∑
i=1

∞∑
j=m+1

t(d, i, j)DdI iJ j (9.9.1)

is called the weight enumerator of the convolutional code (there are many other
names in usage, including complete path enumerator, distance transfer function,
generating function, transmission gain or code spectrum).

The powers and the weight coefficients are non-negative integers, i.e.,
T (D, I, J) is without F2 arithmetic. Obviously every fundamental path has a
code sequence weight of at least df , an information sequence weight of at least 1
and a length of at least m+1. So, the free distance is the minimum power of D
in T (D, I, J). Every fundamental path is uniquely mapped, but not injective,
to a term DdI iJ j , since there can be various paths with the same combination
of d, i, j.

For the actual calculation of the weight enumerator we will introduce another
state in the modified state transition diagram (also called detour flowchart) by
splitting the zero state into

ζ1 = zero state of the outgoing branches

ζ0 = zero state of the incoming branches.

The direct branch from ζ1 to ζ0 (corresponding to ur = 0, ar = 0) is omitted.
Thus, every path from ζ1 to ζ0 is a fundamental path. Every branch in the
modified state transition diagram is labeled with DdI iJ as given in Definition
9.3, where 0 ≤ d ≤ n for the code block weight and 0 ≤ i ≤ 1 for the information
bit weight.

9.9 State Diagrams and Weight Enumerators 379

DIJ

ζ2 = 10ζ1 = 00

ζ4 = 11

ζ3 = 01

DIJ

ζ0 = 00

DJ

DJIJ

D2J

D2IJ

Figure 9.13. Modified state transition diagram for the standard example

Figure 9.11 illustrates the modified state transition diagram for the standard
example. Some fundamental paths are listed below.

ζ1, ζ2, ζ3, ζ0 : D2IJ ·DJ ·D2J = D5IJ3

ζ1, ζ2, ζ3, ζ2, ζ4, ζ3, ζ0 : D2IJ ·DJ · IJ ·DIJ ·DJ ·D2J = D7I3J6

ζ1, ζ2, ζ4, ζ3, ζ2, ζ3, ζ0 : D2IJ ·DIJ ·DJ · IJ ·DJ ·D2J = D7I3J6.

Thus, there are at least two complete paths of length 6 with a code sequence
weight of 7 and an information sequence weight of 3. The positions of the zeros
and ones in the code sequence are not recorded, since this information is only of
interest during decoding and not for the distance structure. For the calculation
of the error probability it is not important where in the code sequence the zeros
and ones are.

To calculate T (D, I, J) we will use a standard signal flowchart technique.
A formal state variable Xs (0 ≤ s ≤ 2m) is assigned to each state with the
following linear equations (r �= 1):

Xr =
∑
s

branch from ζs to ζr

DdI iJ ·Xs. (9.9.2)

The sum is only over those two values of s for which there is a branch from ζs
towards ζr; from this branch d and i are determined. Since ζ1 has no predecessing
state, r �= 1. Thus, we have a system of equations of the state variables Xs,
and since T (D, I, J) describes the paths from ζ1 to ζ0, we obtain the weight
enumerator

T (D, I, J) =
X0

X1
. (9.9.3)

Example 9.13. For the standard example in Figure 9.11 the system of the state

380 9. Description and Properties of Convolutional Codes

equations is obtained as

X2 = D2IJ ·X1 + IJ ·X3 (9.9.4)

X3 = DJ ·X2 +DJ ·X4 (9.9.5)

X4 = DIJ ·X2 +DIJ ·X4 (9.9.6)

X0 = D2J ·X3. (9.9.7)

(9.7.6) implies that

X4 =
DIJ

1−DIJ
X2. (9.9.8)

(9.7.5) and (9.7.8) imply that

X3 =

(
DJ +DJ

DIJ

1−DIJ

)
X2 =

DJ

1−DIJ
X2. (9.9.9)

(9.7.9) and (9.7.4) imply that

X2 =
1−DIJ

DJ
X3 = D2IJ ·X1 + IJ ·X3. (9.9.10)

Implying that (
1−DIJ

DJ
− IJ

)
X3 = D2IJ ·X1, (9.9.11)

X3

X1
=

D2IJ
1−DIJ

DJ
− IJ

=
D3IJ2

1−DIJ −DIJ2
. (9.9.12)

Finally, (9.7.7) and (9.7.12) imply that

T (D, I, J) =
X0

X1
= D2J

X3

X1
=

D5IJ3

1−DIJ(1 + J)
. (9.9.13)

Formally
1

1− ω
=

∞∑
r=0

ωr together with ω = DIJ(1 + J) implying that

T (D, I, J) = D5IJ3

∞∑
r=0

(
DIJ(1 + J)

)r
=

∞∑
r=0

D5+rI1+rJ3+r(1 + J)r (9.9.14)

= D5IJ3 +D6I2J4(1 + J) +D7I3J5(1 + J)2

+D8I4J6(1 + J)3 + (. . .)J7

= D5IJ3 +D6I2J4 +D6I2J5 +D7I3J5

+ 2D7I3J6 +D8I4J6 + (. . .)J7,

where the fundamental paths are sorted by the powers of J (or their length) and
by the powers of D. �

9.9 State Diagrams and Weight Enumerators 381

Definition 9.4. A simplification of the weight enumerator by suppressing J re-
sults in the so-called distance spectra which are sequences wd and cd of integers.
The expansion in the powers of D leads to

T (D, 1, 1) =

∞∑
d=df

wdD
d with wd =

∑
i,j

t(d, i, j) (9.9.15)

and the differentiation with respect to I leads to

∂T

∂I
(D, 1, 1) =

∞∑
d=df

cdD
d with cd =

∑
i,j

i · t(d, i, j). (9.9.16)

The spectral component wd represents the number of fundamental paths
with an encoded sequence Hamming weight of d, and cd includes additionally a
weighting with the information sequence Hamming weight.

Example 9.14. We continuation Example 9.10.

T (D, I, J) =
D5IJ3

1−DIJ(1 + J)
=

∞∑
r=0

D5+rI1+rJ3+r(1 + J)r

implies that

T (D, 1, 1) =
D5

1− 2D
= D5

∞∑
r=0

2rDr = D5 + 2D6 + 4D7 + · · · (9.9.17)

and from
∂T

∂I
=

D5J3(1−DIJ(1 + J)) +D5IJ3 ·DJ(1 + J)

(1−DIJ(1 + J))2

we conclude that

∂T

∂I
(D, 1, 1) =

D5

1− 4D(1−D)
= D5

∞∑
r=0

4rDr(1−D)r (9.9.18)

= D5 + 4D6 + 12D7 + · · · .
Thus we obtain the distance spectra

d 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
wd 1 2 4 8 16 32 64 128 256 512 1024 2028 · · ·
cd 1 4 12 32 80 192 448 1024 2304 5120 11264 24576 · · ·

where (1−D)r =
r∑

s=0

(
r

s

)
(−D)s could be used to simplify the numerical eval-

uation of cd. �

Even for convolutional codes which are only a little more complicated, the
calculation of the distance spectra can not be done without the help of com-
puters. A table of distance spectra of the optimum convolutional codes can be
found, e.g., in [25, 95].

382 9. Description and Properties of Convolutional Codes

9.9.3 Algorithms for Computing the Weight

Enumerator Function

Only for very simple convolutional codes T (D, I, J) can be calculated using a
closed analytical expression. For practical purposes only the lower powers need
to be known. For this we will develop two methods of calculation below.

The state equations (9.7.2) are put into a matrix equation. Let X =
(X2, . . . , X2m)T be the (2m − 1)-dimensional state vector, together with a
(2m − 1, 2m − 1)-dimensional matrix S and two (2m − 1)-dimensional column
vectors a and b 


X0

X


 = J ·




0 aT

b S


 ·




X1

X


 . (9.9.19)

Since every state can only have 2 branches from and 2 branches towards itself,
the (2m, 2m)-dimensional matrix is only sparsely occupied. Written in full the
equation system is:

X0 = J · aTX
X = J · bX1 + J · SX .

(9.9.20)

The last equation implies that

(E − JS)X = JbX1 or X = J(E − JS)−1bX1.

Thus we obtain a closed expression for the weight enumerator which however
cannot yet be effectively numerically calculated:

T (D, I, J) =
X0

X1
= J2 · aT (E − JS)−1b. (9.9.21)

The formula for the geometric series is also valid for matrices leading to a rep-
resentation of the weight enumerator as a power series:

T (D, I, J) =
∞∑
r=0

J2+r · aTS rb. (9.9.22)

With dr = S rb we finally obtain a recursion which is easy to handle:

T (D, I, J) =
∞∑
r=0

J2+r · aTdr , dr = Sd r−1 , d0 = b. (9.9.23)

Example 9.15. Continuation of Example 9.10: the equation system as in
(9.7.19) is 


X0

X2

X3

X4


 =




D2J
D2IJ IJ

DJ DJ
DIJ DIJ


 ·




X1

X2

X3

X4




9.9 State Diagrams and Weight Enumerators 383

thus

a =


 0

D2

0


 b =


 D2I

0
0


 S =


 0 I 0

D 0 D
DI 0 DI


 .

Recursive evaluation leads to the results

d0 = b =


 D2I

0
0


 aTd0 = 0

d1 = Sd 0 =


 0

D3I
D3I2


 aTd1 = D5I

d2 = Sd 1 =


 D3I2

D4I2

D4I3


 aTd2 = D6I2

d3 = Sd 2 =


 D3I3

D4I2 +D5I3

D4I3 +D5I4


 aTd3 = D6I2 +D7I3.

By summing the aTdr weighted by J2+r we obtain the same result of the weight
enumerator as in (9.7.14). �

Below we will develop an alternative method for calculating the weight enu-
merator, where σ = 2m − 1 will be an abbreviation for the dimension of the
matrix S . The characteristic polynomial is written as

f(λ) = det(λE − S) =
σ∑
i=0

αiλ
i

= α0 + α1λ+ · · ·+ ασ−1λ
σ−1 + λσ, (9.9.24)

where λ is a scalar placeholder and the coefficients αi are polynomials in D, I, J
and can be easily obtained by calculating the determinant. According to the
Cayley-Hamilton theorem, the matrix S satisfies its characteristic polynomial,
i.e.,

f(S) = α0E + α1S + · · ·+ ασ−1S
σ−1 + Sσ = 0 . (9.9.25)

The multiplication with S r−σ results in

S r = −
(
α0S

r−σ + α1S
r−σ+1 + · · ·+ ασ−1S

r−1
)
.

Thus, for the polynomials hr = aTS rb we have the recursion

hr = −
(
α0hr−σ + α1hr−σ+1 + · · ·+ ασ−1hr−1

)
(9.9.26)

and according to (9.7.22) the result is

T (D, I, J) =
∞∑
r=0

J2+rhr. (9.9.27)

384 9. Description and Properties of Convolutional Codes

9.10 Problems

9.1. Prove that the standard example G(x) = (1+x+x2, 1+x2) is the unique
solution as a non-catastrophic optimum rate-1/2 code with m = 2.

9.2. Calculate the free distance of G(x) = (1, 1+x+x2+x3) directly without
the weight enumerator.

9.3. Do

G1(x) = (1 + x+ x2, 1 + x+ x2 + x3)

G2(x) = (1 + x+ x2 + x3 + x4, 1 + x4)

create non-catastrophic encoders?

9.4. Determine the modified state transition diagram for the systematic en-
coder G(x) = (1, 1 + x+ x2). Calculate df .

9.5. Calculate the weight enumerator and the distance spectra for the encoder
G(x) = (1, 1 + x).

9.6. Draw a trellis segment for the encoder G(x) = (1+x+x3, 1+x+x2+x3)
given in Table 9.3a.

9.7. Calculate the encoder inverse of the industry standard code

G(x) = (1 + x2 + x3 + x5 + x6, 1 + x+ x2 + x3 + x6)

by using the Euclidean algorithm (see Section A.?).

9.8. Find the polynomial description of the rate-2/3 convolutional encoder in
Figure 9.1 as well as an encoder inverse (by trial and error). Determine
the shift register implementation of the encoder inverse.

9.9. For the standard example G(x) = (1+x+x2, 1+x2) prove the existence
of the so-called expansion factor δ, so that for all pairs of information
and code sequences

wH(a) = wH(u) + δ. (9.10.1)

Calculate δ.

9.10. In extension of Theorem 9.1 prove the following equivalent characteri-
zation: a convolutional encoder is non-catastrophic if and only if there
exists an encoder inverse without feedbacks.

9.11. In extension of Theorem 9.1 and Problem 9.10 prove the following equiv-
alent characterization: a convolutional encoder is non-catastrophic if and
only if there is no path loop with a code sequence weight of zero in the
state transition diagram.

9.10 Problems 385

By using an example, show that the loop of length 1 in the 11-state
does not result in an equivalent characterization, i.e., find a catastrophic
encoder in which the loop of length 1 in the 11-state has a positive code
block weight.

9.12. Let p(x) ∈ F2[x]s be a polynomial of degree s with coefficients in F2 and
p0 = p(0) = 1. Prove that

1

p(x)
= u(x) =

∞∑
r=0

urx
r

can be described by a power series without negative powers which was
already used for the proof of Theorem 9.1. Create the coefficients ur by
using a feedback shift register.

ur–m+1 ur–mur

ar–1ar–m ar

+

ar–m+1 ar–mar

ûr–1ûr–m ûr

+
ar ûr = ur

ur

α0 αm–1 αm −β0 −βm–1 −βm

βm β1 −αm −α1

Figure 9.14. A transparent concatenation of feedback shift registers

9.13. Prove that the combination of the rate-1/1 encoder and its encoder
inverse in Figure 9.12 is transparent (let α0 = 1 and β0 = −1). Find
the polynomial representations. Rearrange the feedback shift registers
so that a central register chain of length m+ 1 is sufficient.

9.14. Determine a systematic encoder Gs(x) with feedbacks for the standard
example with G(x) = (1 + x+ x2, 1 + x2). Is the encoder catastrophic?
Prove that G(x) and Gs(x) create exactly the same code. Calculate an
encoder inverse.

9.15. By using a numerical example prove that the rate-1/1 convolutional
encoder G(x) = (1 + x) is catastrophic. Determine an encoder inverse
with feedbacks similar to Figures 9.4 and 9.12. What happens if the
encoder and the encoder inverse are swapped?

386 9. Description and Properties of Convolutional Codes

9.16. All generator polynomials of the encoder are replaced by their reciprocal
polynomials, see (A.6.3). Prove that this does not change the weight
distribution of the convolutional code.

