
Chapter 8

Reed-Solomon and
Bose-Chaudhuri-Hocquenghem
Codes

Several classes of codes were discussed in the previous chapters, including Ham-
ming codes and the related dual simplex codes, repetition codes and the related
dual parity-check codes, CRC codes for error detection, Fire codes as well as
further codes for the correction of burst errors. However, up until now we have
not found an analytical construction method for really good codes.

In this chapter we will introduce RS and BCH codes, which define two classes
of very powerful codes, found around 1960. Even today these codes belong to
the best known codes, which are used more and more often for various coded
communication systems. The advantages of these codes are summarized below.

• Both code classes can be constructed in an analytically closed way. The RS
codes are MDS codes, hence they satisfy the Singleton bound with equality.

• The minimum distance is known and can be easily used as a design param-
eter. For the RS codes the exact complete weight distribution is known.

• The RS as well as the BCH codes are both very powerful, if the block length
is not too big.

• The codes can be adapted to the error structure of the channel, where RS
codes are particularly applicable to burst errors and BCH codes are appli-
cable to random single errors.

• Decoding according to the BMD method is easy to accomplish. There are
other codes with simpler decoders, but they do not have the other advantages
of RS and BCH codes.

• With little additional effort simple soft-decision information (erasure loca-
tion information) can be used in the decoder.

278 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

• The RS and BCH codes are the foundation for understanding many other
code classes, which are not mentioned here.

In Section 8.1 we will discuss RS codes as the most important class of MDS codes
where also a spectral representation is used from which we will then derive the
description with the generator polynomial. In Section 8.2 we will introduce BCH
codes as special RS codes where the range of the time domain is restricted to
a prime field. The decoding can also be described by spectral methods in a
very compact and clear way, although we will need quite some mathematical
effort. This will take place in Sections 8.3 to 8.6. The RS and BCH codes will
be defined for the general case of q = pm as well as for the so-called primitive
block length

n = pm − 1 = q − 1.

Thus for RS codes the block length is one symbol smaller than the cardinality
of the symbols. In Section 8.7 we will examine the special case of q = 2m for
BCH codes, which is important in practice, and in Section 8.8, we will discuss
modifications to the primitive block length.

Generally, we presuppose a Galois field Fpm with a primitive element z and
for the spectral transformation we will use a(x)◦—•A(x) again.

8.1 Representation and Performance of

Reed-Solomon (RS) Codes

We will first introduce RS codes by some kind of bandwidth condition in the
frequency domain. In Subsection 8.1.2 this will lead us to the derivation of our
usual representation with polynomials and matrices. In Subsection 8.1.3, we
will get into the weight distribution for MDS codes and thus also for RS codes.
In Subsection 8.1.4, the error-correction and error-detection performance will
be analytically calculated. These results will be demonstrated by various error
probability curves in Subsection 8.1.5.

8.1.1 Definition of RS Codes in the Frequency Domain

Definition 8.1 (RS code). For arbitrary prime p and integer m and an arbi-
trary so-called designed distance d = dmin, a Reed-Solomon code with primitive
block length is defined as an (n, k, dmin)q = (pm − 1, pm − d, d)q code. Typically,
d = 2t+ 1 is assumed as odd, thus

n− k = d− 1 = 2t (8.1.1)

for the number of parity-check symbols. The code consists of all time-domain
words (a0, . . . , an−1)↔ a(x) with coefficients in Fpm, such that the corresponding

8.1 Representation and Performance of Reed-Solomon (RS) Codes 279

frequency-domain words (A0, . . . , An−1) ↔ A(x) are zero in a cyclic sequence
of n − k = d − 1 consecutive positions. These positions are also called parity
frequencies. An exact comprehensive description requires a further parameter l,
leading to the form

C =
{
a(x)

∣∣∣ A(x) = Rxn−1[x
l+d−1B(x)] with deg B(x) ≤ n− d

}
. (8.1.2)

Thus Al = Al+1 = · · · = Al+d−2 = 0 for the d− 1 consecutive parity frequencies
and for the remaining n − d + 1 positions Ai can take on arbitrary values. For
l = 1,

C =
{
a(x)

∣∣∣ a(z1) = a(z2) = · · · = a(zd−1) = 0
}

(8.1.3)

and for l = n+ 1− d,

C =
{
a(x)

∣∣∣ deg A(x) ≤ n− d
}
. (8.1.4)

Of course, the other important design parameter apart from p and m is
d = dmin. However, the value of l is less important since it only means a shift in
the frequency domain and thus a “modulation” in the time domain according
to (7.5.8). Yet, the right choice of l can bring about certain simplifications for
realization, as for example symmetrical generator polynomials. The number of
codewords is

|C| = qk = qq−d = pm(pm−d). (8.1.5)

Example 8.1. Let q = 2m and n = 2m − 1. For d = 2m−1 the code rate is

R =
k

n
=

2m − 2m−1

2m − 1
≈ 1

2
.

For m = 8 we have a (255, 128, 128)256 code, which can also be conceived as a
binary (2040, 1024, 128)2 code. The number of codewords is 256128 = 21024 ≈
10308, so for a primitive polynomial of degree 8 we already have an enormous
number of codewords. Any two byte-viewed codewords differ in at least 128
bytes (or symbols), however, for the binary interpretation the difference is only
128 bits, because two bytes are different, as soon as only one bit of the two 8-bit
groups is different. �

Theorem 8.1. RS codes are cyclic MDS codes. Hence the designed distance is
equal to the minimum distance and dmin = d = n− k + 1 = pm − k.

Proof. “Linearity”: is apparent.
“Cyclic”: Let a(x) ∈ C and c(x) = Rxn−1[xa(x)] be the cyclic shift. Accord-

ing to Theorem 7.8, Ci = ziAi, thus Ci = 0⇔ Ai = 0. Therefore c(x) ∈ C.
“MDS”: Let dmin be the actual minimum distance and d = n− k+ 1 be the

designed distance. We are to prove that dmin = d. According to the Singleton

280 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

bound of Theorem 4.7, dmin ≤ n − k + 1 = d. Consider C as in (8.1.4) with
degA(x) ≤ n−d. Therefore A(x) �= 0 has a maximum of n−d roots, hence there
are a maximum of n− d values z−i with ai = −A(z−i) = 0. Thus wH(a(x)) ≥ d
and dmin ≥ d. For any other l we also have dmin = d, since the “modulation” in
the time domain does not affect the weights. �

8.1.2 Polynomial and Matrix Description

Theorem 8.2. For the RS code as given in (8.1.3) the generator polynomial
and the parity-check polynomial are

g(x) =

d−1∏
i=1

(x− zi) , h(x) =

n∏
i=d

(x− zi). (8.1.6)

Proof. For each codeword, a(zi) = 0 with 1 ≤ i ≤ d − 1. Thus (x − zi) is a
divisor of a(x). So a(x) must be a multiple of g(x). Since g(x) has the degree
d−1 = n−k, g(x) is the generator polynomial. For the parity-check polynomial
h(x), g(x)h(x) = xn − 1 must be valid, which is the case according to (7.2.13).

�
Systematic encoding can be performed with g(x) or h(x) according to the

methods discussed in Section 6.4.
A further alternative is given directly by the spectral description, since non-

systematic encoding can be accomplished by inverse Fourier transform where
the Ai values are presumed as information symbols in the frequency domain.
For this realization, the encoder consists of an additive chain of k multipliers
operated in separate feedback loops, where the chain is to be run through n
times as illustrated in Figure 7.1. So nk = n2R operations are required and the
adder chain has to be computed sequentially. Usually, this IDFT method does
not have any significant advantages over the four encoding methods discussed
in Section 6.4. However, the IDFT could be simplified in certain cases by using
FFT (Fast Fourier Transform) methods.

The equation Ai = a(zi) =

n−1∑
µ=0

aµz
iµ = 0 with 1 ≤ i ≤ d − 1 as in (8.1.3)

directly yields a (n− k, n) = (d− 1, n)-dimensional parity-check matrix H :

(a0, . . . , an−1) ·

1 z1 z2 . . . zn−1

1 z2 z4 . . . z2(n−1)

...
...

...
...

1 zd−1 z(d−1)2 . . . z(d−1)(n−1)

T

︸ ︷︷ ︸
H T

= (0, . . . , 0). (8.1.7)

8.1 Representation and Performance of Reed-Solomon (RS) Codes 281

However, we do not necessarily need the parity-check matrix for decoding.

Example 8.2. Let p = 2, m = 3 and therefore n = 7. The arithmetic of F23 is
the same as in Example 7.4. For the designed distance d = 3, we have a (7, 5, 3)8
RS code C = {(a0, . . . , a6) | A1 = A2 = 0}. According to Theorem 8.2,

g(x) = (x− z)(x− z2) = x2 + z4x+ z3,

h(x) = (x− z3)(x− z4)(x− z5)(x− z6)(x− z7)

= x5 + z4x4 + x3 + z5x2 + z5x+ z4.

For the generator matrix, according to (6.2.7),

G =

z3 z4 1
z3 z4 1

z3 z4 1
z3 z4 1

z3 z4 1

 .

For the parity-check matrix, according to (6.3.3),

H1 =

(
1 z4 1 z5 z5 z4

1 z4 1 z5 z5 z4

)
or according to (8.1.7)

H2 =

(
1 z1 z2 z3 z4 z5 z6

1 z2 z4 z6 z1 z3 z5

)
.

By using elementary row operations H1 can be transformed into H2: multiply
row 2 in H1 by z2 and then add row 2 to row 1:

H3 =

(
1 z1 z2 z3 z4 z5 z6

0 z2 z6 z2 1 1 z6

)
.

Multiplying row 2 with z2 and adding row 1 to row 2 finally yields H2. This
code corrects one error in the 8-ary symbols or in the binary 3-tuples. �

8.1.3 The Weight Distribution of MDS Codes

Theorem 8.3. The weight distribution as given in Definition 4.7 can be calcu-
lated in an analytically closed way for any arbitrary (n, k, dmin)q MDS code and
therefore also for every RS code:

Ar =

(
n

r

)
(q − 1)

r−dmin∑
j=0

(−1)j
(
r − 1

j

)
qr−dmin−j (8.1.8)

=

(
n

r

) r−dmin∑
j=0

(−1)j
(
r

j

)
(qr−dmin+1−j − 1). (8.1.9)

282 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

The number of codewords of minimum Hamming weight is

Admin
= An−k+1 =

(
n

dmin

)
(q − 1).

Proof. The proof is mainly based on some lengthy combinatorial considerations,
similar to the proof of the MacWilliams identity. Two different forms of the proof
of Theorem 8.3 can be found, for instance, in [17, 83]. Here, we will prove the
equality of (8.1.8) and (8.1.9), however, we will do without the actual proof of
Theorem 8.3 as we did for Theorem 5.8. The identity(

r

j

)
=

(
r − 1

j

)
+

(
r − 1

j − 1

)
is used to rewrite (8.1.9)

Ar =

(
n

r

) r−dmin∑
j=0

(−1)j
[(

r − 1

j

)
+

(
r − 1

j − 1

)]
(qr−dmin+1−j − 1)

=

(
n

r

) r−dmin∑
j=0

(−1)j
(
r − 1

j

)
(qr−dmin+1−j − 1)

+

(
n

r

) r−dmin−1∑
j=0

(−1)j+1

(
r − 1

j

)
(qr−dmin−j − 1)

=

(
n

r

) r−dmin∑
j=0

(−1)j
(
r − 1

j

)
(qr−dmin+1−j − qr−dmin−j)

The last equation is identical to (8.1.8). �
The weight distribution of the (31, 32 − 2t, 2t + 1)31 RS codes is shown in

Figure 8.1 for some values of t, together with the binary (31, 26, 3)2 Hamming
code. In the logarithmically scaled Ar-axis, Ar = 0 is symbolized by the value
0.1. Obviously, words of almost maximum weight dominate for RS codes, for
instance, the number of words of almost maximum weight with A30 = A31 =
1.67 · 1043 almost corresponds to the total number |C| = 3229 = 4.46 · 1043 of
all codewords. In other words, almost all codewords of length 31 also have a
Hamming weight of 30 or 31. In contrast, for a binary code there can only be
one codeword of maximum weight. For the binary Hamming code, most of the
words have a medium weight; the maximum is maxAl = A15 = A16 = 8.28 · 106,
whereas the code itself has the size |C| = 226 = 6.71 · 107.

8.1.4 Calculation of Error-Correction and

Error-Detection Probabilities for RS Codes

We presume a hard-decision q-ary abstract DMC with the symbol-error proba-
bility pe as in Definition 1.2. So 1−pe is the probability for the correct reception

8.1 Representation and Performance of Reed-Solomon (RS) Codes 283

0 5 10 15 20 25 30

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

 r

 A
r

RS(31,29,3)
32

RS(31,27,5)
32

RS(31,23,9)
32

RS(31,15,17)
32

Hamming(31,26,3)
2

Figure 8.1. Weight distributions of RS and Hamming codes

of a symbol, pe is the probability for an arbitrary error and pe/(q − 1) is the
probability for a specific error. The transmission over the DMC is modeled as
y = a + a with the transmitted codeword a ∈ C and the error pattern e, as
known from Chapters 4 and 6.

For a bounded-minimum-distance (BMD) decoder we distinguish between
the following post-decoding error probabilities, which all refer to codewords, not
to symbols. This is also illustrated in Figure 8.2.

(1) The probability for correct decoding is the probability that the received word
y is contained in the decoding sphere of radius t = �(dmin − 1)/2� around
the transmitted codeword a . By using Theorem 4.15 we get

Pcd = P (y ∈ Kt(a) | a) = P (wH(e) ≤ t) =
t∑

r=0

(
n

r

)
pre(1−pe)

n−r. (8.1.10)

(2) The word-error probability is the probability that y is not contained in the
decoding sphere of radius t around a :

Pw = 1− Pcd = P (wH(e) > t) =
n∑

r=t+1

(
n

r

)
pre(1− pe)

n−r. (8.1.11)

284 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

a

P
cd
=1-P

w
P
icd

P
ed

Figure 8.2. Illustration of some post-decoding error probabilities

(3) The probability of incorrect decoding is the probability that y is contained
in the decoding sphere of radius t around another codeword b unequal to
the transmitted codeword a :

Picd = P

e ∈

⋃
b∈C\{0}

Kt(b)

 . (8.1.12)

(4) The probability of error detection is the probability that y is not contained
in any of the decoding spheres of radius t around the codewords:

Ped = P

(
e /∈
⋃
b∈C

Kt(b)

)
. (8.1.13)

(5) The probability of undetected error was already introduced in Section 4.6 as
the probability that y is identical to another codeword, yet unequal to the
transmitted codeword:

Pue = P (e ∈ C \ {0}). (8.1.14)

This probability is only mentioned to complete the list, since it is only
relevant purely for error-detection decoding without error-correction.

8.1 Representation and Performance of Reed-Solomon (RS) Codes 285

Obviously,

Pcd + Picd + Ped = 1, or equivalently Ped = Pw − Picd. (8.1.15)

For the orders of the error probabilities we typically have

Pue � Picd � Pw ≈ Ped. (8.1.16)

Furthermore, there are also the post-decoding bit error probability Pb and the
post-decoding error probability Pcs of the encoded q-ary symbols, which are
smaller than Pw by a maximum factor of k · log2 q and k, respectively, thus
Pw/(k log 2q) ≤ Pb ≤ Pw and Pw/k ≤ Pcs ≤ Pw. In Theorem 4.15 we stated an
upper bound for Pcs

Pcs ≤ Pcs,bound =

n∑
r=t+1

min

{
1,

r + t

k

}(
n

r

)
pre(1− pe)

n−r. (8.1.17)

For the derivation of the approximation of Pcs in the proof of Theorem 4.15 we
used the fact that the number of symbol errors per decoded word is limited to
r + t given that the received word contains r errors. This is still exactly true,
since on the one hand if the received word lies between the decoding spheres,
no decoding takes place and therefore no further symbol errors can occur. On
the other hand if the received word is in a wrong decoding sphere, there is a
maximum of t further symbol errors. A slightly different bound can be found in
[151]. Another approach to the problem of bit-error rate calculations is presented
in [131].

In contrast to determining the word-error rate Pw, which is very simple, the
calculation of Picd, Ped and Pue requires the knowledge of the weight distribution,
which, fortunately, according to Theorem 8.3, can be calculated quite easily for
all RS codes. This is why we will discuss the calculation of Picd and Ped in this
chapter although it is really only an MDS specificity and does not relate to the
algebraic structure of RS codes in any way. In addition, error detection, i.e.,
detecting that the received word lies between the decoding spheres, can be easily
implemented by RS decoders, as we will see later in this chapter.

Theorem 8.4. We presuppose a q-ary hard-decision DMC with the symbol-
error probability pe. For an (n, k, dmin)q MDS code with the weight distribu-
tion A0, . . . , An and t = �(dmin − 1)/2� the post-decoding probability of incorrect
decoding of a received word can be exactly calculated in closed form:

Picd =
n∑

h=dmin

Ah

t∑
s=0

h+s∑
l=h−s

N(l, s, h) · p(l), (8.1.18)

where

p(l) =

(
pe

q − 1

)l
(1− pe)

n−l (8.1.19)

286 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

and

N(l, s, h) =

r2∑
r=r1

(
h

h− s+ r

)(
s− r

l − h + s− 2r

)(
n− h

r

)
(q − 2)l−h+s−2r(q − 1)r

(8.1.20)
with r1 = max{0, l − h} and r2 = �(l − h + s)/2�. The term N(l, s, h) denotes
the number of error patterns of weight l that are at Hamming distance s to a
specific codeword b of weight h. The definition of N(l, s, h) is independent of
the choice of b. According to (1.3.10), p(l) denotes the probability of a specific
error pattern of weight l.

Proof. For a specific b ∈ C with wH(b) = h, let

N(l, s, h) =
∣∣∣{e ∈ Fn

q | wH(e) = l and dH(e,a) = s}
∣∣∣,

where h− s ≤ l ≤ h+ s must be valid for N(l, s, h) > 0. The probability Picd of
incorrect decoding is the probability that e is contained in a decoding sphere of
radius t around a codeword unequal to the all-zero codeword:

Picd =
∑

b∈C\{0}
P (e|e is decoded to b)

=
∑

b∈C\{0}

t∑
s=0

P (e|dH(e, b) = s)

=
∑

b∈C\{0}

t∑
s=0

n∑
l=0

P (e|wH(e) = l and dH(e, b) = s)

=
∑

b∈C\{0}

t∑
s=0

n∑
l=0

N(l, s, wH(a)) · p(l)

=
n∑

h=dmin

Ah

t∑
s=0

h+s∑
l=h−s

N(l, s, h)) · p(l).

To complete the proof we are to show the expression (8.1.20) for N(l, s, h). We
modify b of Hamming weight h in s positions into e of Hamming weight l. Then
we count the number of possibilities which give us the value of N(l, s, h). To
modify b into e we divide b into five sectors:

a = (�= 0 . . . �= 0 �= 0 . . . �= 0 �= 0 . . . �= 0 0 0 0 0)

different identical different different identical

e = (0 0︸ ︷︷ ︸
v

�= 0 . . . �= 0︸ ︷︷ ︸
w

�= 0 . . . �= 0︸ ︷︷ ︸
j

�= 0 . . . �= 0︸ ︷︷ ︸
r

0 0︸ ︷︷ ︸
g

)

8.1 Representation and Performance of Reed-Solomon (RS) Codes 287

using g = n− v − w − j − r as an abbreviation. The following must be valid:

h = wH(a) = v + w + j

l = wH(e) = w + j + r

s = dH(a ,a) = v + j + r.

(8.1.21)

Let v, w, j, r be arbitrary. For the first h positions, i.e., for the first three sectors,

there are

(
h

w

)
possibilities to choose the w identical positions. For the j mod-

ifications in the remaining h − w = v + j positions there are

(
h− w

j

)
(q − 2)j

ways to modify the non-zero symbols into other non-zero symbols. For the last

n− h = r+ g positions, i.e., for the last two sectors, there are

(
n− h

r

)
(q − 1)r

ways of choosing the r non-zero symbols. All of this leads us to

N(l, s, h|v, w, j, r) =

(
h

w

)
·
(
h− w

j

)
(q − 2)j ·

(
n− h

r

)
(q − 1)r.

The equations (8.1.21) imply that

h− s + r = w, l − h+ s− 2r = j

and therefore

N(l, s, h|r) =
(

h

h− s+ r

)(
s− r

l − h+ s− 2r

)(
n− h

r

)
(q − 2)l−h+s−2r(q − 1)r

and finally

N(l, s, h) =

r2∑
r=r1

N(l, s, h|r).

Further considerations lead to r1 = max{0, l − h} and r2 = �(l − h + s)/2�, so
that the bottom numbers of the binomial coefficients are always smaller than or
equal to the upper numbers and both numbers are always non-negative. �

The proof above follows the methods in [95, 131]. Slightly different but
equivalent analytical expressions of Picd are derived in [17, 144].

Theorem 8.5. For the probability of incorrect decoding for a q-ary hard-
decision DMC with the symbol-error probability pe the following approximations
can be made. For small pe,

Pw

Picd
≈ t! · (q − 1)t

(n− 2t)(n− 2t+ 1) · · · (n− t+ 1)
≈ t! ·

 q − 1

n− 3

2
t

t

≥ t!. (8.1.22)

288 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

For small pe and the primitive block length n = q − 1 we even have

Pw

Picd
≈ t!. (8.1.23)

For large pe,

Picd ≈ q−(n−k) ·
t∑

r=0

(
n

r

)
(q − 1)r. (8.1.24)

Proof. For small pe,

Pw =

n∑
r=t+1

(
n

r

)
pre(1− pe)

n−r ≈
(

n

t+ 1

)
pt+1
e .

In the expression for Picd according to (8.1.18), the summands are only dom-
inant at the minimum value of l, because p(l) decreases rapidly for increasing
l. According to (8.1.18), minimum l implies minimum h and maximum s, thus
h = 2t+ 1, s = t, l = t+ 1 as well as r1 = r2 = 0. Therefore

Picd = A2t+1

(
2t+ 1

t+ 1

)(
t

0

)(
n− 2t− 1

0

)
(q − 2)0(q − 1)0p(t+ 1)

≈ (q − 1)

(
n

2t+ 1

)(
2t+ 1

t+ 1

)(
pe

q − 1

)t+1

,

where A2t+1 was determined according to Theorem 8.3 and the approximation
1− pe ≈ 1 was used for p(l). The given form of the quotient Pw/Picd is achieved
by simple remodeling and the product in the denominator, which consists of t
factors, is replaced by the power of t of the middle factor. The inequality on the
right hand side of (8.1.22) follows directly from q − 1 ≥ n ≥ n− 3t/2.

For large pe the worst case is pe = (q−1)/q, since for pe/(q−1) = 1−pe = 1/q,
p(l) = 1/qn which is independent of l. Thus every specific error pattern occurs
with the same probability, so the channel is completely random, which allows
the following approximation:

Picd = P (y is contained in the wrong decoding sphere)

= P (y is contained in an arbitrary decoding sphere)

− P (y is contained in the correct decoding sphere)

≈ cardinality of all decoding spheres of all codewords

number of possible words

− P (y is contained in the correct decoding sphere)

=

qk ·
t∑

r=0

(
n

r

)
(q − 1)r

qn
−

t∑
r=0

(
n

r

)
pre(1− pe)

n−r︸ ︷︷ ︸
= (q − 1)r/qn

=

(
qk

qn
− 1

qn

) t∑
r=0

(
n

r

)
(q − 1)r.

8.1 Representation and Performance of Reed-Solomon (RS) Codes 289

The approximation qk − 1 ≈ qk finally leads us to the result of (8.1.22). �
Both approximations of Theorem 8.5 are very precise, which we can easily

verify by the performance curves in the next subsection.

8.1.5 Performance Results for RS Codes over
Random-Error Channels

In this subsection we will only take a look at RS codes over the binary modulated
AWGN channel with hard decisions, so we assume statistically independent ran-
dom single errors and the results are displayed over Eb/N0. One of the great
advantages of RS codes is their capability of correcting burst errors, however,
we will consider the corresponding performance results not in this chapter but
later on in Section 12.?.

The following figures show the performance of RS codes over q = 2m for var-
ious parameter constellations, where the post-decoding error rates are displayed
over Eb/N0 and pe in the upper and lower subfigures, respectively. Generally,
the word-error rate Pw is always given as in (8.1.11) and the probability of in-
correct decisions Picd as in (8.1.18), usually over Eb/N0 in the upper subfigures
as well as over the q-ary symbol error rate prior to the decoder pe in the bottom
subfigures. For the binary AWGN channel, i.e., for BPSK modulation, pe is
determined by Eb/N0 as

pe = 1−
(
1−Q

(√
2REb

N0

))m

, (8.1.25)

using (1.3.16), with m = log2 q and M = 1, as well as (1.3.23).
The following upper subfigures over Eb/N0 contain not only the graphs for

the word-error rate Pw and Picd but also the bit-error rate pb,unc = Q(
√

2Eb/N0)
for uncoded binary signaling. Concerning the bottom subfigures over pe, the
uncoded bit-error rate pb,unc could only be shown over the q-ary symbol-error
rate pe if all RS codes were considered over the same q = 2m, because of pb,unc =
1−(1−pe)

1/m, of course. In actual fact, pb,unc over pe is only given in the bottom
part of Figure 8.6.

The first three figures show RS codes with primitive block lengths n = q−1
over q = 32, q = 64 and q = 256 for t = 1, 2, 4, 8 and partly also for t = 16 and
t = 32, with k = n − 2t accordingly. Note that for n = 255 the block length
for binary interpretation already amounts to 2040 bits. Independent of q or n,
increasing t obviously yields improvements of some dB with regards to Eb/N0.

Also, Picd rapidly decreases with increasing t, so the probability of unde-
tected errors becomes quite small. For n = 255 and t = 8, Picd ≤ 2.1 · 10−5

according to (8.1.23), which can be clearly seen in Figure 8.5. Furthermore
Picd ≤ 2.6 ·10−14 at t = 16 as well as Picd ≤ 3.8 ·10−37 at t = 32. For the relation
Pw/Picd, the approximation (8.1.22) at n = 255 gives us the values 1, 2, 26, 59291
for t = 1, 2, 4, 8 which can also be seen in Figure 8.5.

290 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

In Figure 8.6, just for n = 255, Pw is not combined with Picd, but instead
with the post-decoding q-ary symbol-error rate Pcs, however, it is not Pcs itself
but its upper bound Pcs,bound as given in (8.1.17) that is shown. The probability
Pcs can only be smaller than Pw by a maximum factor of k, yet, the upper
bound only reduces it by a factor of (2t + 1)/(255 − 2t), i.e., 3/253 ≈ 0.01 at
t = 1 and 65/191 ≈ 0.34 at t = 32. Although the post-decoding bit-error or
symbol-error rates differ by a factor between 10 and 100, this difference becomes
less important as the slope gets steeper.

Comparing Figures 8.2, 8.3 and 8.4 for fixed t, we can see that increasing q
means a minor deterioration of Pw and Picd. This is not surprising, because as the
code rate R = (n− 2t)/n increases, the number of correctable symbols remains
the same. Although the block length also increases in symbols as well as in bits,
according to the channel coding theorem, the increase can not compensate for
the growing R.

8.1 Representation and Performance of Reed-Solomon (RS) Codes 291

3 4 5 6 7 8 9 10 11 12 13

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

uncoded BER

t=1

t=2
t=4

t=2

t=4

t=8

t=8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

t=1

t=2

t=4

t=8

Figure 8.3. Pw and Picd of (31, 31 − 2t, 2t+ 1)32-RS codes for several t

292 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

uncoded BER

t=1
t=2
t=4
t=8
t=16

t=8

t=4
t=2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

t=1

t=16

t=2

t=4

t=8

Figure 8.4. Pw and Picd of (63, 63 − 2t, 2t+ 1)64-RS codes for several t

8.1 Representation and Performance of Reed-Solomon (RS) Codes 293

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

t=16

uncoded
 BER

t=2
t=4

t=1
t=2
t=4
t=8

t=32 t=8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

t=1

t=32

t=2

t=4

t=16

t=8

Figure 8.5. Pw and Picd of (255, 255 − 2t, 2t+ 1)256-RS codes for several t

294 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
cs,bound

t=2

uncoded BER

t=1 t=4

t=16 t=8t=32

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
cs,bound

t=4

uncoded BER

t=1

t=2

t=8
t=16t=32

Figure 8.6. Pw and Pb of (255, 255 − 2t, 2t+ 1)256-RS codes for several t

8.1 Representation and Performance of Reed-Solomon (RS) Codes 295

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

q=128

uncoded BER
q=64

q=128
q=64

q=256

q=256

Figure 8.7. Pw and Picd of (63, 47, 17)q -RS codes for several q

In Figure 8.7 we consider shortened RS codes with n = 63 < q = 64, 128, 256.
As we will see later in Theorem 8.14, shortened MDS codes are still MDS codes.
Thus n−k = 2t is still valid and Pw and Picd can be calculated as usual. For fixed
n = 63, k = 47 and t = 8, we increase q and therefore also the binary block
length. The effect is a minor deterioration of Pw over Eb/N0, which is solely
caused by the increasing q-ary symbol-error rate pe, as a q-ary symbol requires
more binary transmissions for increasing q and is therefore more vulnerable to
errors. However, over pe, Pw is fully independent of q, which is obvious looking
at (8.1.11). In contrast to Pw, Picd undergoes a significant improvement for
increasing q.

In Figure 8.8 we examine the shortening under different circumstances. We
have q = 256 and t = 8 fixed, but the block length is n = 53λ + 2t, so a code
block transports either 1, 2, 3 or 4 ATM cells [?]. Small λ implies a smaller block
length and a decreasing code rate and thus worse bandwidth efficiency, however,
the power efficiency, i.e., Pw over Eb/N0, remains almost the same. Over pe
(bottom subfigure) instead of over Eb/N0 (upper subfigure), the dependence on
the code rate does not exist, so small λ is the most suitable, because the code
rate is small without paying the penalty of worsening signal-to-noise ratio.

296 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

k=53*4

uncoded BER

k=53*4

k=53*1
k=53*2
k=53*3

k=53*3

k=53*1

k=53*2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

k=53*4

k=53*1

k=53*3

k=53*2

k=53*1

k=53*2

k=53*3

k=53*4

Figure 8.8. Pw and Picd of (53λ+ 16, 53λ, 17)256-RS codes for λ = 1, 2, 3, 4

8.1 Representation and Performance of Reed-Solomon (RS) Codes 297

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

uncoded BER

t=2

t=32
t=64

t=4
t=8
t=16

t=2

t=4

t=8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Symbol−error rate before decoder

P
os

t−
de

co
di

ng
 e

rr
or

 r
at

es

 P
w

 P
icd

t=4

t=32

t=8

t=16

t=2

t=64

t=8

t=2
t=4

Figure 8.9. Pw and Picd of (4t− 1, 2t− 1, 2t + 1)4t-RS codes for several t

298 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Finally, Figure 8.9 shows a comparison of non-shortened RS codes again.
We consider RS codes over q = 8, 16, 32, 64, 128, 256 with code rate R = 1/2 in
the form (4t− 1, 2t− 1, 2t+ 1)4t. Obviously, we gain a lot thanks to increasing
block length and thus to increasing complexity. However, at t = 64 the perfor-
mance curve is already very steep with less than 1 dB between almost error free
transmission and total failure. We will discuss the practical side of such curves
in Section 10.?.

8.2 Representation and Performance of

Bose-Chaudhuri-Hocquenghem (BCH)

Codes

We will first introduce BCH codes as a subset of RS codes. Some examples
and interesting special cases are considered in Subsection 8.2.2. Tables and
performance curves of very high practical relevance are presented in Subsection
8.2.3. Finally, the asymptotic properties of BCH codes and further features are
considered in Subsection 8.2.4.

8.2.1 Definition of BCH Codes as Subsets of RS Codes

BCH codes emerge from RS codes by adopting the Fourier transform in Fpm and
the block length n = pm − 1, but the code symbols are taken from the prime
field Fp instead of Fpm. For the typical case of p = 2 the code symbols are bits
and not groups of bits, so BCH codes are normal binary codes for p = 2.

Definition 8.2 (BCH codes). For arbitrary prime p and integer m and an
arbitrary designed distance d, a Bose-Chaudhuri-Hocquenghem code is defined
as an (n, k, dmin)p code with the primitive block length n = pm − 1 = q − 1 and
the relations

dmin ≥ d , k ≤ n+ 1− dmin ≤ n+ 1− d. (8.2.1)

Thus n − k ≥ 2t for d = 2t + 1. The code consists of all time-domain
words (a0, . . . , an−1) ↔ a(x) with coefficients in Fp, such that the corresponding
frequency-domain words (A0, . . . , An−1)↔ A(x) are zero in a cyclic sequence of
at least d− 1 consecutive positions. Usually the parity frequencies are presumed
at 1, . . . , d− 1 and the resulting code

C =
{
a(x) ∈ Fp[x]

∣∣∣ a(z1) = · · · = a(zd−1) = 0
}

(8.2.2)

is then called a narrow-sense BCH code. As for the RS codes, the exact de-
scription of general BCH codes requires a further parameter l, where the parity
frequencies are defined by Al = Al+1 = · · · = Al+d−2 = 0 for the d−1 consecutive
positions.

8.2 Representation and Performance of BCH Codes 299

From the given designed distance d we do not directly obtain the information
block length k or the code rate R nor the actual minimum distance dmin, but
have to calculate these parameters first. The parameter l for determining the
parity frequencies is of greater importance for BCH codes than for RS codes,
since for BCH codes l might even influence dmin. However, typically the narrow-
sense BCH codes as in (8.2.2) are used, because then the number of parity bits
is usually at its minimum.

In contrast to (8.1.3) with a(x) ∈ Fpm [x] for RS codes, a(x) ∈ Fp[x] is required
in (8.2.2) for BCH codes, both with degrees ≤ n−1. So a BCH code is a subset
of an RS code, thus dmin,BCH ≥ dmin,RS = d and the Singleton bound implies
(8.2.1). The relation dmin ≥ d is also called BCH bound . Usually, dmin is not
calculated exactly, since the gap between dmin and d might remain unknown for
most applications. In some cases even dmin = d is valid (see [83, 105]). The exact
calculation of the information block length k (or the dimension of the code) is
performed by the generator polynomial as follows.

Theorem 8.6. Let z be a primitive element of the Galois field Fpm. For the
designed distance d, an (n, k, dmin)p BCH code with dmin ≥ d is created by the
generator polynomial

g(x) = LCM
(
f[z1](x), . . . , f[zd−1](x)

)
(8.2.3)

=
∏
b∈M

(x− b) with M =

d−1⋃
i=1

[zi],

where [zi] = {zip0, zip1 , zip2 , . . .} denotes the set of conjugates as introduced in
Definition 7.3, i.e., all conjugates of zi with respect to Fp. The corresponding
minimal polynomial is

f[zi](x) =
∏
b∈[zi]

(x− b) =

|[zi]|−1∏
r=0

(x− zip
r

). (8.2.4)

So, the generator polynomial g(x) is the least common multiple (LCM) of the
minimal polynomials of z1, . . . , zd−1. Thus, for the information block length

k = n− deg g(x) = n−
∣∣∣∣∣
d−1⋃
i=1

[zi]

∣∣∣∣∣ (8.2.5)

≥ n−
d−1∑
i=1

|[zi]|.

Proof. The coefficients of the minimal polynomials, and thus also of the gen-
erator polynomial, are taken from the prime field Fp. So with the information
polynomial, the codeword polynomial also has its coefficients in Fp. For each

300 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

combination of two minimal polynomials of (8.2.3), the polynomials are either
relatively prime or identical. As for the RS codes, the equation a(zi) = Ai = 0
implies that g(x) must consist of the linear factors (x− zi) or that g(x) must be

a multiple of

d−1∏
i=1

(x− zi). According to Theorem 7.9, the requirement that the

coefficients of a(x) must be in Fp is equivalent to a(zi)p = a(zip) for 0 ≤ i ≤ n−1.
Thus for 1 ≤ i ≤ d− 1,

0 = a(zi)
0 = a(zi)p = a(zip)

0 = a(zip)p = a(zip
2
)

0 = a(zip
2
)p = a(zip

3
) . . .

So all (x− zip
r
) with 1 ≤ i ≤ d− 1 and r = 0, 1, 2, . . . must be linear factors of

g(x), but only once for each factor. According to (8.2.3), g(x) is reducible into
just these factors. �

For this representation, the BCH codes are defined as subsets of RS codes
which almost makes the BCH bound dmin ≥ d seem trivial. However, there are
other concepts for introducing BCH codes. For example, if the BCH codes are
defined by the generator polynomial g(x) with coefficients in Fp and its roots are
z1, . . . , zd−1, then the proof of the BCH bound is quite time-consuming [144].

To make things a little easier, we introduced BCH codes with a slight re-
striction in this chapter, as we did with the algebraic foundations in Chapter
7 where we only discussed the extension of a prime field Fp to a Galois field
Fpm . However, the concept of field extensions over primitive polynomials can be
generalized to the extension of Fpm to Fpmr , where r is an integer, which gives us
BCH codes with the primitive block length pmr−1 and pm-ary symbols. For the
binary interpretation with p = 2, the block length is simply m(2mr − 1). These
BCH codes
• are especially suitable for channels with burst errors of length m, in other

words, the coding scheme can be adjusted to the error structure of the
channel quite precisely;

• include the RS codes as a special case for r = 1, hence, BCH codes are a
generalization of RS codes and vice versa.

However, since almost all BCH codes used in practice are binary with the block
length 2m − 1 and r = 1, the restriction chosen in Definition 8.2 seems to be
reasonable under practical aspects. Thus BCH codes are still special RS codes.

The weight distribution of most BCH codes is not known analytically. BCH
codes for correcting up to 3 errors are an exception however, since formulas to
calculate the weight distribution are well known [79, 144].

8.2 Representation and Performance of BCH Codes 301

8.2.2 Examples and Special Cases

Example 8.3. As in Example 8.2, let p = 2, m = 3 and thus n = 7. For the
designed distance d = 3 we have a narrow-sense BCH code with the generator
polynomial

g(x) = LCM
(
f[z1](x), f[z2](x)

)
= f[z](x) = x3 + x+ 1,

since, according to Example 7.4, [z1] = {z1, z2, z4} = [z2] with f[z](x) = x3 +
x + 1. The BCH code turns out to be a cyclic (7, 4, 3)2 Hamming code, when
compared to 6.3. For better understanding, we will now take a closer look
at the representation in the frequency domain. According to Definition 8.2,
A1 = A2 = 0 and according to Theorem 7.9, A2

i = A2i mod 7, as already used for
the proof of Theorem 8.6. Thus,

A0 = A2·0 = A2
0 implies that A0 ∈ {0, 1}

A3 = A2·5 = A2
5

A6 = A2·3 = A2
3 A3 determines A6

A5 = A2·6 = A2
6 = A4

3 A3 determines A5

A1 = A2·4 = A2
4 A1 = 0 per definition

A2 = A2·1 = A2
1 A2 = 0 per definition

A4 = A2·2 = A2
2 implies that A4 = 0.

Therefore for the codewords in the frequency domain

C ◦—• {(A0, 0, 0, A3, 0, A
4
3, A

2
3) | A0 ∈ F2, A3 ∈ F8}.

With A0 ∈ F2 (1 bit) and A3 ∈ F23 (3 bits), 4 bits can be given arbitrarily in the
frequency domain, which, of course, correspond to the k = 4 information bits
in the time domain. Table 8.1 lists the corresponding frequency words to the
16 codewords of the cyclic Hamming (or BCH) code of Example 6.1. Obviously
A0 ∈ F2, A3 ∈ F8, A6 = A2

3 and A5 = A2
6 are satisfied and each of the 16 frequency

words of the form (A0, 0, 0, A3, 0, A
4
3, A

2
3) is presented in the table. For the cyclic

shift from row to row, Ai is always multiplied by zi. �

Example 8.4. Comparison of the error-correction ability of RS and BCH codes.
There exists a (15, 11, 5)16 RS code that can correct 2 symbol errors. In the
binary interpretation we have a (60, 44, 5)2 code, where

e = 0000 1111 1111 0000 0000 . . . is correctable

e = 0000 0001 1111 1000 0000 . . . is not correctable

e = 0000 0001 0010 1000 0000 . . . is not correctable.

Each burst error up to length 5 can be corrected, for burst errors of length 6, 7
and 8, 75%, 50% and 25% can be corrected, respectively. However, 3 random

302 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

single errors can not be corrected. So the minimum distance for the binary
interpretation is still 5, however, in special cases some slightly larger values are
possible but not guaranteed.

According to Table 8.2, there exists a (63, 45, 7)2 BCH code with comparable
code rate, which can always correct 3 random single errors. For a channel with
burst errors, the RS code is better than the BCH code. However, for a channel
with statistically independent random single errors the BCH code is better than
the RS code. �

Special case. In Theorem 6.10 we defined CRC codes by the generator poly-
nomial g(x) = (1 + x)p(x) with a primitive polynomial p(x). For p(x) = f[z](x)
CRC codes turn out to be special BCH codes with the form

g(x) = LCM
(
f[z0](x), f[z1](x)

)
= (x+ 1)p(x) (8.2.6)

for the designed distance d = 3. Thus dmin ≥ 3. In the proof of Theorem 6.10
dmin was determined to be even, so now we can exactly prove that dmin ≥ 4 or
dmin = 4. �

For binary BCH codes with d = 2t + 1 the advantages of the form given
in (8.2.2) become immediately clear: a(zt) = 0 implies that a(zd−1) = a(z2t) =
a(zt)2 = 0. For narrow-sense BCH codes with l = 1 (beginning at z1) at least
the set z1, . . . , z2t of roots is required. In contrast to shifted parity frequencies
with l = 0 (beginning at z0) at least the set z0, . . . , z2t of roots is required,

Table 8.1. Time-domain codewords and corresponding frequency-domain words for
the (7, 4, 3)2 Hamming (or BCH) code

a(x) A(x)
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 z4 0 z2 z
0 1 1 0 1 0 0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1 0 0 z3 0 z5 z6

0 0 0 1 1 0 1 1 0 0 z6 0 z3 z5

1 0 0 0 1 1 0 1 0 0 z2 0 z z4

0 1 0 0 0 1 1 1 0 0 z5 0 z6 z3

1 0 1 0 0 0 1 1 0 0 z 0 z4 z2

1 1 1 0 0 1 0 0 0 0 z6 0 z3 z5

0 1 1 1 0 0 1 0 0 0 z2 0 z z4

1 0 1 1 1 0 0 0 0 0 z5 0 z6 z3

0 1 0 1 1 1 0 0 0 0 z 0 z4 z2

0 0 1 0 1 1 1 0 0 0 z4 0 z2 z
1 0 0 1 0 1 1 0 0 0 1 0 1 1
1 1 0 0 1 0 1 0 0 0 z3 0 z5 z6

8.2 Representation and Performance of BCH Codes 303

thus a further factor x−1 occurs in the generator polynomial which reduces the
dimension k unnecessarily. This only really makes sense for CRC codes, as seen
previously.

Special case: We consider binary BCH codes for the correction of one error,
so t = 1, d = 3 and n = 2m − 1. Again, let p(x) be a primitive polynomial and
z be a primitive element of Fpm. Because of z2

m
= zn+1 = z, we have

[z] = {z, z2, z4, z8, . . . , z2m−1} , |[z]| = m

for the set of conjugates of z. Thus [z] = [z2], so p(x) = f[z](x) = f[z2](x) for the
minimal polynomials. According to Theorem 8.6, the generator polynomial is

g(x) = LCM
(
f[z1](x), f[z2](x)

)
= f[z](x) =

m−1∏
i=0

(x− z2
i

). (8.2.7)

The last equation follows from (7.3.6). Now, according to (8.2.5),

k = n− deg g(x) = (2m − 1)−m,

so the binary BCH codes for correcting one error are (2m − 1, 2m −m − 1, 3)2
codes, which correspond to the cyclic binary Hamming codes of order m, as the
comparison to Theorem 5.10 reveals. The binary Hamming codes can also be
described by

C = {a ∈ Fn
p | a(z) = 0}

because for coefficients in the prime field, a(z) = 0 directly implies that a(z2) =
a(z)2 = 0. �

Parity-check matrices of BCH codes have a special feature which we will
examine for the case of p = 2 and d = 2t + 1. As for RS codes in (8.1.7), each
row of H also has the form z0, zi, zi·2, . . . , zi·(n−1) for BCH codes, where i takes
on each of the n− k exponents in [z1]∪ . . .∪ [z2t]. However, with the condition
a(x) ∈ F2[x], i only has to take on the values 1, 2, 3, . . . , 2t. Because of

z2 ∈ [z1], z4 ∈ [z1], z6 ∈ [z3], z8 ∈ [z1], z10 ∈ [z5], . . .

i can be further restricted to the t values 1, 3, 5, . . . , 2t − 1, i.e., the dimension
of the parity-check matrix is reduced from (n − k, n) to (t, n) or to (mt, n) for
the binary interpretation. However, since mt can be greater than n − k (see
Theorem 8.8), the reduced binary parity-check matrix may still have linearly
dependent rows, as we will demonstrate in Example 8.5.

Example 8.5. The next subsection contains the Tables 8.1 and 8.2, which have
been mentioned so often and list the existing BCH codes and their error cor-
rection ability. The following examples show how these tables were created.
Therefore we will now consider various BCH codes with n = 15, where the

304 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

arithmetic of F24 is based on the primitive element z with z4 + z + 1 = 0 as in
Example 7.5.

(1) The designed distance d = 3 implies the generator polynomial

g(x) = LCM
(
f[z1](x), f[z2](x)

)
= f[z](x) = x4 + x+ 1,

because [z1] = {z1, z2, z4, z8} = [z2]. The result is the (15, 11, 3)2 Hamming
code. Since d = 3 ≤ dmin ≤ wH(g(x)) = 3, d = dmin as well as n− k = mt.

(2) The designed distance d = 5 implies the generator polynomial

g(x) =
∏
b∈M

(x− b) with M = [z1] ∪ [z2] ∪ [z3] ∪ [z4].

We have [z1] = {z1, z2, z4, z8} = [z2] = [z4] and [z3] = {z3, z6, z12, z24 = z9},
thus M = [z] ∪ [z3]. Therefore the generator polynomial is

g(x) = f[z](x) · f[z3](x)
= (x− z1)(x− z2)(x− z4)(x− z8)︸ ︷︷ ︸

x4 + x+ 1

· (x− z3)(x− z6)(x− z9)(x− z12)︸ ︷︷ ︸
x4 + x3 + x2 + x+ 1

= x8 + x7 + x6 + x4 + 1,

which gives us a (15, 7, 5)2 code. Since d = 5 ≤ dmin ≤ wH(g(x)) = 5, d = dmin

as well as n− k = mt again. The parity-check matrix is reduced from

H =

1 z1 z1·2 . . . z1·14

1 z2 z2·2 . . . z2·14

1 z3 z3·2 . . . z3·14

1 z4 z4·2 . . . z4·14

to

H =

(
1 z1 z1·2 . . . z1·14

1 z3 z3·2 . . . z3·14

)
.

For the binary interpretation this is a (2 ·4, 15) = (n−k, n)-dimensional matrix.
(3) The designed distance d = 7 implies the generator polynomial

g(x) =
∏
b∈M

(x− b) with M = [z1] ∪ [z2] ∪ [z3] ∪ [z4] ∪ [z5] ∪ [z6].

Since [z1] = [z2] = [z4] and [z3] = [z6], M = [z1] ∪ [z3] ∪ [z5] thus

g(x) = f[z](x) · f[z3](x)︸ ︷︷ ︸
x8 + x7 + x6 + x4 + 1

· f[z5](x)︸ ︷︷ ︸
x2 + x+ 1

= x10 + x8 + x5 + x4 + x2 + x+ 1,

8.2 Representation and Performance of BCH Codes 305

which gives us a (15, 5, 7)2 code with d = dmin as well as n−k = 10 < 4 ·3 = mt.
The reduced parity-check matrix is

H =

 1 z1 z1·2 . . . z1·14

1 z3 z3·2 . . . z3·14

1 z5 z5·2 . . . z5·14

 ,

which is a (12, 15)-dimensional matrix for binary interpretation. A (15, 5)2 code
has a (10, 15)-dimensional binary parity-check matrix, so that two linearly de-
pendent rows of the 12 rows of the binary H can be eliminated to get the
standard form.

(4) The designed distance d = 9 implies the generator polynomial

g(x) =
∏
b∈M

(x− b) with M =
8⋃
i=1

[zi].

Since [z1] = [z2] = [z4] = [z8] and [z3] = [z6], M = [z1] ∪ [z3] ∪ [z5] ∪ [z7] and
therefore

g(x) = f[z](x) · f[z3](x) · f[z5](x)︸ ︷︷ ︸
x10 + x8 + x5 + x4 + x2 + x+ 1

· f[z7](x)︸ ︷︷ ︸
x4 + x3 + 1

=
x15 − 1

x− 1

= x14 + x13 + x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5

+ x4 + x3 + x2 + x+ 1.

which gives us a (15, 1, 15)2-repetition code, i.e., 7 instead of simply 4 errors can
be corrected. So there are binary BCH codes of length 15 simply for correcting
1, 2, 3 or 7 errors.

These 3 codes (except for the repetition code) can also be taken from the
following Tables 8.1 and 8.2. If the parity frequencies are moved, codes with
different generator polynomial may emerge. �

8.2.3 Tables and Performance Results on BCH Codes

Table 8.2 lists the binary narrow-sense BCH codes for the correction of t errors
with all primitive block lengths from n = 7 to n = 1023 [95, 105, 144, 151]. Of
course, 2t+ 1 ≤ d ≤ dmin ≤ n− k + 1.

Table 8.3 shows the generator polynomials in octal coding for some of the
BCH codes listed in Table 8.2. For the (15, 7)2 BCH code with t = 2, for
example, we have g(x) = 721octal = 111 010 001dual = x8 + x7 + x6 + x4 + 1.

306 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Table 8.2. t-error-correcting (n, k)2 BCH codes (from [105])

n k t n k t n k t n k t n k t
7 4 1 255 199 7 511 322 22 1023 913 11 1023 443 73

191 8 313 23 903 12 433 74
15 11 1 187 9 304 25 893 13 423 75

7 2 179 10 295 26 883 14 413 77
5 3 171 11 286 27 873 15 403 78

163 12 277 28 863 16 393 79
31 26 1 155 13 268 29 858 17 383 82

21 2 147 14 259 30 848 18 378 83
16 3 139 15 250 31 838 19 368 85
11 5 131 18 241 36 828 20 358 86
6 7 123 19 238 37 818 21 348 87

115 21 229 38 808 22 338 89
63 57 1 107 22 220 39 798 23 328 90

51 2 99 23 211 41 788 24 318 91
45 3 91 25 202 42 778 25 308 93
39 4 87 26 193 43 768 26 298 94
36 5 79 27 184 45 758 27 288 95
30 6 71 29 175 46 748 28 278 102
24 7 63 30 166 47 738 29 268 103
18 10 55 31 157 51 728 30 258 106
16 11 47 42 148 53 718 31 248 107
10 13 45 43 139 54 708 34 238 109
7 15 37 45 130 55 698 35 228 110

29 47 121 58 688 36 218 111
127 120 1 21 55 112 59 678 37 208 115

113 2 13 59 103 61 668 38 203 117
106 3 9 63 94 62 658 39 193 118
99 4 85 63 648 41 183 119
92 5 511 502 1 76 85 638 42 173 122
85 6 493 2 67 87 628 43 163 123
78 7 484 3 58 91 618 44 153 125
71 9 475 4 49 93 608 45 143 126
64 10 466 5 40 95 598 46 133 127
57 11 457 6 31 109 588 47 123 170
50 13 448 7 28 111 578 49 121 171
43 14 439 8 19 119 573 50 111 173
36 15 430 9 10 127 563 51 101 175
29 21 421 10 553 52 91 181
22 23 412 11 1023 1013 1 543 53 86 183
15 27 403 12 1003 2 533 54 76 187
8 31 394 13 993 3 523 55 66 189

385 14 983 4 513 57 56 191
255 247 1 376 15 973 5 503 58 46 219

239 2 367 16 963 6 493 59 36 223
231 3 358 18 953 7 483 60 26 239
223 4 349 19 943 8 473 61 16 247
215 5 340 20 933 9 463 62 11 255
207 6 331 21 923 10 453 63

8.2 Representation and Performance of BCH Codes 307

Table 8.3. Generator polynomials for t-error-correcting (n, k)2 BCH codes (from
[221])

n k t g(x) octal
7 4 1 13
15 11 1 23

7 2 721
5 3 2467

31 26 1 45
21 2 3551
16 3 107657
11 5 5423325
6 7 313365047

63 57 1 103
51 2 12471
45 3 1701317
39 4 166623567
36 5 1033500423
30 6 157464165547
24 7 17323260404441
18 10 1363026512351725

127 120 1 211
113 2 41567
106 3 11554743
99 4 3447023271
92 5 624730022327
85 6 130704476322273
78 7 26230002166130115
71 9 6255010713253127753
64 10 1206534025570773100045
57 11 335265252505705053517721
50 13 54446512523314012421501421

255 247 1 435
239 2 267543
231 3 156720665
223 4 75626641375
215 5 23157564726421
207 6 16176560567636227
199 7 7633031270420722341
191 8 2663470176115333714567
187 9 52755313540001322236351
179 10 22624710717340432416300455
171 11 15416214212342356077061630637
163 12 7500415510075602551574724514601
155 13 3757513005407665015722506464677633
147 14 1642130173537165525304165305441011711
139 15 461401732060175561570722730247453567445
131 18 215713331471510151261250277442142024165471

308 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

For the entries of Tables 8.1 and 8.2 the designed distance d = 2t + 1 was
presumed. The actual minimum distance dmin is unknown and may even be
much larger. However, most of the decoding methods for BCH codes can not
profit from a larger dmin, since the decoding is only based on the positions of
the d− 1 = 2t sequential parity frequencies. Yet, in some cases we can calculate
dmin exactly, as Theorem 8.7 proves.

Theorem 8.7. Suppose an (n, k)p BCH code with the primitive block length
n = pm − 1. If the designed distance d is a divisor of n, then dmin = d.

Proof. Let n = d · β. The sum (5.1.2) of the finite geometric series can be
denoted by

xn − 1 = xdβ − 1 = (xβ − 1) ·
(
1 + xβ + x2β + · · ·+ x(d−1)β

)
︸ ︷︷ ︸

= a(x)

.

For i = 1, . . . , d − 1, the relation 0 < iβ < n is valid and therefore ziβ �= 1.
Since zi is a root of xn − 1 but not of xβ − 1, a(zi) = 0 must be satisfied. Since
a(x) ∈ Fp[x] and deg a(x) ≤ n − 1, a(x) is a codeword of Hamming weight d.
Thus dmin ≤ d. Finally, the BCH bound dmin ≥ d leads to dmin = d. �

According to Table 8.2, n − k = m · t for small t. Typically, the required
number of parity-check bits is upper bounded by the minimum number of errors
to be corrected:

Theorem 8.8. For a binary (n, k)2 BCH code with the primitive block length
n = 2m − 1, which can correct at least t errors,

n− k ≤ m · t. (8.2.8)

Proof. For the designed distance d = 2t + 1, n − k = deg g(x) is equal to

the cardinality of M =
d−1⋃
i=1

[zi] =
t⋃

i=1

(
[z2i−1] ∪ [z2i]

)
. In F2m , zi and z2i are

conjugates, thus [zi] = [z2i]. So the conjugacy class [z2i] can be omitted and M
is reduced to M =

t⋃
i=1

[z2i−1]. According to (6.3.5), |[z2i−1]| ≤ m and therefore

|M| ≤ t ·m. �

According to (7.3.1) with t ≈ dmin

2
implies that 1−R ≤ m

2
· dmin

n
. So if

approximate equality was reached, then obviously dmin/n → 0 is implied for
n → ∞ or m → ∞. Consequently, according to Section 3.4, BCH codes are
asymptotically bad. A complete proof can be found in [83].

Figures 8.9, 8.10 and 8.11 show the bit-error rate over the binary modulated
AWGN channel for binary BCH codes at rates of approximately 1/2, 1/4 and

8.2 Representation and Performance of BCH Codes 309

3/4 for various block lengths between 15 and 1023. BMD decoding with hard
decisions is assumed, such that the curves can be calculated according to (4.7.4).
Obviously a larger block length implies a smaller error rate. The comparison of
Figures 8.9, 8.10 and 8.11 suggests R ≈ 1/2 as the best available code rate. To
make this really clear, Figure 8.13 illustrates some BCH codes with various code
rates and a constant block length of n = 255. According to the Shannon theory,
small code rates are best (for example, according to Figure 3.6 a transition from
R = 1/2 to R = 1/10 can achieve a gain of approximately 1 dB), but obviously
the construction method for BCH codes requires medium code rates for best
results.

Both parts of Figure 8.14 show the same BCH codes with n = 255 as Figure
8.13. However, the bottom part now restricts the bit-error rate to a maximum
of 10−10 for easier comparison with Figures 8.9 to 8.11. In addition the top part
of Figure 8.14 shows the word-error rates. According to Theorem 4.15 or (1.7.2),
we have

Pb ≈ dmin

k
· Pw,

so the differences between Pb and Pw are the largest for small t in Figure 8.14.
For Figures 8.9 to 8.11 the differences between Pb and Pw are much smaller
since an increasing t means an increase of k, so this does not merit further
explanation. The comparison of Figures 8.11 and Figure 8.15 will also show
that these differences are negligible.

310 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

3 4 5 6 7 8 9 10 11 12 13
Eb/N0 [dB]

10–10

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

1

uncoded

(7, 4)
(15, 7)

Pb

(31, 16)
(63, 30)

(127, 64)
(255, 131)
(511, 259)

(1023, 513)

Figure 8.10. Bit-error probabilities of BCH codes with R = 1/2

1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

3 4 5 6 7 8 9 10 11 12 13
Eb/N0 [dB]

b

(31, 6)
(63, 16)

(127, 29)
(255, 63)
(511, 130)

(1023, 258)

uncoded

Figure 8.11. Bit-error probabilities of BCH codes with R = 1/4

8.2 Representation and Performance of BCH Codes 311

uncoded

3 4 5 6 7 8 9 10 11 12 13

1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

Pb

Eb/N0 [dB]

(31, 21)
(63, 45)

(127, 99)
(255, 191)
(511, 385)

(1023, 768)

Figure 8.12. Bit-error probabilities of BCH codes with R = 3/4

uncoded

Ga = 2.9 R = 0.97 t = 1
Ga = 4.5 R = 0.94 t = 2
Ga = 6.4 R = 0.87 t = 4
Ga = 8.3 R = 0.75 t = 8
Ga = 9.9 R = 0.51 t = 18
Ga = 9.7 R = 0.36 t = 25
Ga = 9.0 R = 0.18 t = 42
Ga = 6.6 R = 0.08 t = 55

3 4 5 6 7 8 9 10 11 12 13 14 15
Eb/N0 [dB]

1

10–5

10–10

10–15

10–20

Pb

Figure 8.13. Bit-error probabilities of BCH codes with n = 255

312 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

3 4 5 6 7 8 9 10 11 12 13
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

W
or

d−
er

ro
r

ra
te

 P
w

t=1
t=2
t=4
t=8
t=18
t=25
t=42
t=55

uncoded

3 4 5 6 7 8 9 10 11 12 13
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
 [dB]

 B
it−

er
ro

r
ra

te
 P

b

t=1
t=2
t=4
t=8
t=18
t=25
t=42
t=55

uncoded

Figure 8.14. Word-error and bit-error probabilities of BCH codes with n = 255
(same codes as in Figure 8.13)

8.2 Representation and Performance of BCH Codes 313

8.2.4 Further Considerations and Asymptotic

Properties

Figure 8.15 shows a comparison between a binary BCH code and three RS
codes, where R ≈ 3/4 is the code rate for all cases. Again the binary AWGN
channel with hard decisions is presupposed, so there are no burst errors, only
random single errors. For the same nominal block length the RS code is better
than the BCH code. However, when compared to the RS block length with
binary interpretation, the BCH code is better, as expected on the grounds of
the previous considerations and in particular Example 8.4.

3 4 5 6 7 8 9 10 11 12 13
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
 [dB]

 W

or
d−

er
ro

r
ra

te
 P

w

uncoded

RS(31,23)
32

 ≅ (155,115)
2
, t=4

RS(63,47)
64

 ≅ (378,282)
2
, t=8

RS(255,191)
256

 ≅ (2040,1528)
2
, t=32

BCH(255,191)
2
, t=8

Figure 8.15. Comparison of a BCH code with some RS codes (all with R ≈ 3/4)

Note that Figure 8.15 also shows the word-error rate and Figure 8.12 the
bit-error rate; the small difference for the BCH code corresponds exactly to the
different factors of (4.7.4) and (4.7.5) of Theorem 4.15.

Now, we will examine the influence block lengths have on the behaviour of
BCH codes by taking a closer look at Tables 8.3 and 8.4. According to Table 8.4
the asymptotic coding gain Ga,hard = 10 · log10(R(t + 1)) grows with increasing
block length, as expected on the grounds of Figures 8.9 to 8.11. Yet, at the same
time the distance rate d/n decreases, as shown in Table 8.5. The distance rate

314 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Table 8.4. Asymptotic coding gains Ga,hard of some BCH codes

n R ≈ 1/2 R ≈ 1/4 R ≈ 3/4
31 3.1 1.9 3.1
63 5.2 4.8 4.6
127 7.4 7.0 5.9
255 9.9 8.8 8.3
511 12.0 11.5 10.5
1023 14.6 14.3 13.1

Table 8.5. Distance rate d/n of some BCH codes

n R ≈ 1/2 R ≈ 1/4 R ≈ 3/4
31 0.23 0.48 0.16
63 0.21 0.37 0.11
127 0.17 0.34 0.07
255 0.15 0.24 0.07
511 0.12 0.22 0.06
1023 0.11 0.21 0.05

asympt.GV 0.11 0.21 0.04

of RS codes is much larger with dmin = 1− R + 1/n ≈ 1− R, and thus lies on
the asymptotic Singleton bound, which is obvious since RS codes, being MDS
codes, satisfy the Singleton bound with equality.

Figure 8.16 shows a comparison of the binary BCH codes with the asymp-
totic upper Elias bound and the asymptotic lower Gilbert-Varshamov (GV)
bound of Figure 4.6. For the block lengths 31, 63 and 255 all BCH codes
are listed, however, for 1023 only a small number of representative BCH codes
is given. Short BCH codes lie way above the GV bound, and for n = 31 even
above the upper Elias bound (which is, of course, no contradiction, since for a
small n, codes can have a quite different behaviour than in the asymptotic case
of n→∞). For a bigger n the distance rate comes close to the GV bound and
for n > 1023 even goes below the GV bound. So even in this representation
BCH codes turn out to be asymptotically bad.

Asymptotically bad codes with d/n→ 0 at a constant code rate and n→∞
may, of course, still have a coding gain going toward infinity, since

Ga,hard ≈ 10 · log10
(
R

2
· d
n
· n
)
→ ∞ as n→∞

is possible, if d/n converges very slowly toward zero.

Although BCH codes are asymptotically bad their practical advantages still
dominate: BCH codes exist for many parameter values, they are more powerful
for short and medium block lengths than any other known code family, the
costs of encoding and especially of decoding are relatively small. However, the
disadvantages are:

8.2 Representation and Performance of BCH Codes 315

Distance rate d
min

/n

C
od

e
ra

te
 R

=
k/

n

BCH codes

n=31 (all)

n=63 (all)

n=255 (all)

n=1023 (selection)

Elias bound

Gilbert−Varshamov bound

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.16. Comparison of some BCH codes with upper and lower asymptotic
bounds

• BCH codes can only correct up to half the designed distance by the usual, less
time-consuming decoding methods. It is of no use for decoding if the actual
minimum distance is bigger. ML decoding is usually impossible, although it
would mean enormous improvements [?].

• Furthermore the usual decoding methods only process and exploit hard de-
cisions. So the expected gain of 2 to 3 dB for soft decisions can not be
achieved. For example, according to Figure 8.10, the block length could be
reduced by at least a factor of 8 with soft decisions.

The methods for increasing the coding gain of BCH codes found up to now
require so much more effort for decoding, that they are uninteresting in practice,
therefore we will not discuss them here.

316 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

8.3 Decoding Basics: Syndrome and Key

Equation

8.3.1 The Syndrome

For RS and BCH codes, the ideal maximum-likelihood decoder can not be imple-
mented with a reasonable amount of effort, instead only the bounded-minimum-
distance (BMD) decoder as given in Definition 4.6 is feasible. Therefore, in the
following, we will assume that the actual number of errors in the received word
is no higher than the number of correctable errors. However, if there are more
errors then no specific behaviour of the decoder is stipulated, since this case is
assumed to be a failure of BMD decoder.

Although the derivation of the decoding algorithms is given for the general
case it is primarily oriented on RS codes. Since, in contrast to RS decoding,
there are enormous simplifications for BCH codes and in particular for the binary
BCH codes; we will discuss this case separately in Section 8.7.

The received word y with hard decisions is the superposition of the trans-
mitted codeword a with the error word e and because of linearity of the spectral
transformation

y = a + e ◦—• Y = A +E . (8.3.1)

The symbols of the codeword and the error word are q = pm-ary for RS codes
and p-ary for BCH codes in the time domain and q-ary in the frequency domain.
The term “error” in the time domain always refers to the q- or p-ary values.
Whether the code symbols are transmitted directly as multilevel or as bit groups
is irrelevant: if just one bit of a bit group is wrong, the whole bit group is
considered to be false.

General presumptions for RS decoding: let d = 2t + 1 be the designed
distance and n = pm − 1 be the primitive block length. For the number τ of
actual errors, we have

τ ≤ t

{
= (n− k)/2 RS codes
≤ (n− k)/2 BCH codes

}
. (8.3.2)

Furthermore, let l = 0 in Definitions 8.1 and 8.2 for RS and BCH codes, respec-
tively. So the 2t parity frequencies are at the lowest positions 0, 1, . . . , 2t − 1.
Then the codeword in the frequency domain is described by

a(x) ◦—• A(x)↔ A = (0, . . . , 0︸ ︷︷ ︸
2t zeros

, A2t, . . . , An−1︸ ︷︷ ︸
n−2t positions

). (8.3.3)

For BCH codes some of the n − 2t higher frequencies can also be constantly
zero, however, this is of no use for decoding, since it would need a sequence of
consecutive roots. The received word is

Y = (E0, . . . , E2t−1︸ ︷︷ ︸
= S

, A2t + E2t, . . . , An−1 + En−1). (8.3.4)

8.3 Decoding Basics: Syndrome and Key Equation 317

Definition 8.3. The syndrome S ↔ S(x) is defined by the parity frequencies of
the received word, in other words, by the 2t components of the Fourier transform
of the received word at those positions where the codewords have zeros in the
frequency domain:

S(x) =

2t−1∑
i=0

Six
i , Si = Ei = Yi = y(zi) =

n−1∑
µ=0

yµz
iµ. (8.3.5)

As in the Definitions 5.7 and 6.4, the syndrome is defined as a vector of 2t
components which are all-zero if and only if the received word or the error
pattern is a codeword. However, the syndrome defined here is not equal to
the Fourier transform of the syndrome of Definition 6.4. The calculation of the
syndrome actually corresponds to a partial DFT. Although this is the most time-
consuming part of the decoder, many operations can be performed in parallel
and sometimes also FFT (Fast Fourier Transform) methods can be used [17, 18].
For BCH codes we do not actually have to Fourier transform each of the 2t
frequencies, since, according to Theorem 7.9, Sip mod n = Sp

i must be valid (we
will discuss this in detail in Section 8.7).

If only error detection is required then the decoding is finished after calcu-
lating the syndrome and checking whether it is zero.

8.3.2 The Error-Locator Polynomial and the Key
Equation

Knowing the syndrome means also knowing the lower 2t frequencies of the re-
ceived word or the error pattern. We now need to find the remaining n − 2t
frequencies such that the Hamming weight wH(e) = wH(e(x)) takes on its mini-
mum in the time domain. If we were to swap the time for the frequency domain,
this would be a classic task in communications engineering: complete an impulse
such that its spectrum is as narrow as possible. The requirement of a minimum
Hamming weight of e(x) is now to be transformed into the requirement of the
minimum order of an suitable polynomial, so that an algebraic evaluation is
possible.

Definition 8.4. Each error pattern e(x) ↔ (e0, . . . , en−1) is mapped to the set
of unknown error locations

I = {i | 0 ≤ i ≤ n− 1 ∧ ei �= 0} , |I| = τ ≤ t (8.3.6)

which defines the error-locator polynomial

C(x) =
∏
i∈I

(1− xzi) = 1 + C1x+ · · ·+ Cτx
τ (8.3.7)

of order τ . For the error-free case with I = ∅, we assume C(x) = 1.

318 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Of course, I and C(x) are unknown and depend only on the error pattern but
not on the transmitted codeword. Obviously, C(x) contains all the information
about the error locations, since I can be reconstructed from C(x) with the help
of the so-called Chien search:

I = {i | C(z−i) = 0}. (8.3.8)

So the Chien search means checking through all z−i to see if there is a root
of C(x). This leaves us with the main problem of calculating C(x) from S(x)
for which we will now examine the dependence between both polynomials. Let
c(x)◦—•C(x). For i ∈ I, ci = −C(z−i) = 0, and for i �∈ I, ei = 0. Thus ciei = 0
for 0 ≤ i ≤ n− 1 and, according to Theorem 7.8,

Rxn−1[C(x)E(x)] = 0. (8.3.9)

This can be equivalently expressed by a cyclic convolution

τ∑
µ=0

CµE(i−µ) mod n = 0 für i = 0, . . . , n− 1. (8.3.10)

Now, we will reduce the condition (8.3.10) to the interval i = τ, . . . , 2τ −1, then
all indices of E are in the range 0, . . . , 2t−1 so that E(i−µ) mod n can be replaced
by Si−µ (note that C0 = 1):

Si +
τ∑

µ=1

CµSi−µ = 0 für i = τ, . . . , 2τ − 1. (8.3.11)

This result is called the key equation or also Newton identity . The matrix form
of (8.3.11) is

−Sτ
−Sτ+1

...

−S2τ−2

−S2τ−1

=

S0 S1 · · · Sτ−2 Sτ−1

S1 S2 · · · Sτ−1 Sτ

...
...

...
...

Sτ−2 Sτ−1 · · · S2τ−4 S2τ−3

Sτ−1 Sτ · · · S2τ−3 S2τ−2

︸ ︷︷ ︸
= Sτ,τ

·

Cτ

Cτ−1

...

C2

C1

. (8.3.12)

This is a linear equation system with τ equations to determine the τ un-
knowns C1, . . . , Cτ and therefore to determine the error locations. Since all syn-
drome components are known, (8.3.12) is solvable, however, we require efficient
calculation methods which only call for reasonable effort.

The equation system (8.3.12) can also be formed for the maximum number
t of errors. In the following, we will show that the rank of the corresponding

8.3 Decoding Basics: Syndrome and Key Equation 319

matrix St,t is equal to the actual number τ of errors. For this proof we enumerate
the set of error locations with indices I = {i1, . . . , iτ} and with the abbreviation
Zµ = ziµ we have the following for the syndrome:

Sr =

n−1∑
µ=0

eµz
rµ =

t∑
µ=1

eiµZ
r
µ. (8.3.13)

In the case of τ < t, t − τ error magnitudes eiµ are set to zero. For the matrix
St,t we have the following factorization, which can be easily verified:

St,t =

1 1 · · · 1
Z1 Z2 · · · Zt

...
...

...

Zt−1
1 Zt−1

2 · · · Zt−1
t

︸ ︷︷ ︸
= Zt,t

·

ei1
ei2

. . .

eit

︸ ︷︷ ︸
= ∆t,t

·

1 Z1 · · · Zt−1
1

1 Z2 · · · Zt−1
2

...
...

...

1 Zt · · · Zt−1
t

︸ ︷︷ ︸
= Z T

t,t

.

(8.3.14)
The determinant of the matrix Zt,t is the well known Vandermonde determinant
[1, 17, 105]

det(Zt,t) =
∏

t≥µ>ν≥1

(Zµ − Zν). (8.3.15)

For 0 ≤ iν < iµ ≤ n − 1, Zν = ziν and Zµ = ziµ are, of course, unequal and
therefore det(Zt,t) �= 0. Hence, the matrix Zt,t is not singular and

rank(St,t) = rank(∆t,t) = τ (8.3.16)

leads to the result as stated above. �

Of course, we do not know the number τ of errors in the received word.
Either τ can be determined by evaluating the rank of the matrix St,t or by using
the following method. Again we use (8.3.12) with t instead of τ . If τ = t, then
St,t is non-singular and (8.3.12) is solvable with a unique solution. If, however,
τ < t then St,t is singular and (8.3.12) is not solvable. Then we delete the
bottom row and the right column of the matrix St,t and check the resulting
matrix St−1,t−1 for singularity. We repeat this method until we have found a
maximum τ such that Sτ,τ is non-singular.

320 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

The solution to the key equation now gives us I = {i1, . . . , iτ} as well as
Zµ = ziµ . The relation (8.3.13) leads to the equation system

S0

S1

...

Sτ−1

=

1 1 · · · 1
Z1 Z2 · · · Zτ

...
...

...

Zτ−1
1 Zτ−1

2 · · · Zτ−1
τ

︸ ︷︷ ︸
= Zτ,τ

·

ei1
ei2

...

eiτ

, (8.3.17)

from which we can calculate the error magnitudes directly, since Zτ,τ is non-
singular. This method, called Peterson-Gorenstein-Zierler decoder, is too time-
consuming for practical decoding with big block lengths and big designed dis-
tances. However, the special band structure of the matrix Sτ,τ enables much
better algorithms for calculating the solution of the key equation (see Section
8.5) as well as for calculating the error magnitudes (see Section 8.4). There are
further simplifications for binary BCH codes, discussed separately in Section 8.7.

If, in contrast to the presumption, there are more than t errors, there are
two possibilities:

(1) Usually the received word will be outside a decoding sphere, if the code is not
perfect. In this case, an ideal BMD decoder must detect an uncorrectable
error pattern, this is usually called decoder failure and contributes to Ped as
defined in (8.1.10). Such a situation is recognized by the Chien search that
then finds less than deg C(x) roots of C(x) or that C(x) in Fpm can not be
factorized into various linear factors or that the error magnitudes are zero
at the calculated error locations.

However, it is also possible that for a received word outside a decoding sphere
an apparently successful decoding is made, this is usually called decoder
malfunction [164, 220]. Yet, the word determined by the decoder can not be
a codeword, since the decoder only corrects a maximum of t errors. This case
can be easily recognized by checking the parity frequencies of the calculated
word.

(2) However, if the received word is in a decoding sphere of another codeword,
then an unrecognized wrong correction takes place, this is usually called
decoder error and contributes to Picd as defined in (8.1.12).

Detailed examples of the various scenarios of decoding can be found in Problem
8.10. For the calculation or approximation of the error probability as in Theorem
4.15, each received word with more than t errors is considered to be decoded
incorrectly. So we do not have to distinguish between received words in wrong
decoding spheres and received words outside of any decoding sphere.

8.3 Decoding Basics: Syndrome and Key Equation 321

Example 8.6. We consider the key equation for the case of τ = t = 1: let
I = {r} and e(x) = erz

r and therefore Si = e(zi) = erz
ir. The key equation has

the simple form −S1 = S0 · C1 and leads to the solution

C(x) = C0 + C1x = 1− S1

S0

x = 1− erz
r

er
x = 1− zrx =

∏
i∈I

(1− xzi).

The Chien search delivers I = {r}. For τ = 1 < 2 = t, the matrix

S2,2 =

(
S0 S1

S1 S2

)
=

(
er erz

r

erz
r erz

2r

)
is obviously singular. �

Example 8.7. We consider the (7, 3, 5)8 RS code with the F8 arithmetic as in
Example 6.4. For the codewords, a ◦—• A = (0, 0, 0, 0, A4, A5, A6) is valid. For
example, choose

e = (0, z5, 0, 0, 0, z6, 0) ↔ e(x) = z5x+ z6x5,

then Si = e(zi) = z5+i + z6+5i, so

S0 = z5 + z6 = z

S1 = z6 + z4 = z3

S2 = 1 + z2 = z6

S3 = z + 1 = z3.

The key equation for t = 2 is(−S2

−S3

)
=

(
S0 S1

S1 S2

)(
C2

C1

)
and thus has the solution(

C2

C1

)
=

1

S0S2 − S2
1

(
S2 −S1

−S1 S0

)(−S2

−S3

)
=

1

1 + z6

(
z6 z3

z3 z

)(
z6

z3

)

=
1

z2

(
z5 + z6

z2 + z4

)
=

(
z6

z6

)
.

The error-locator polynomial C(x) = 1 + z6x+ z6x2 = (1 + z1x)(1 + z5x) again
leads to I = {1, 5}. In the following, we will make frequent use of this example.

As a further example with τ = 3 > 2 = t we choose

e = (z, z5, 0, 0, 0, z6, 0) ↔ e(x) = z + z5x+ z6x5.

For the syndrome we have (S0, S1, S2, S3) = (0, 1, z5, 1) which gives us the error-
locator polynomial C(x) = 1 + z5x + zx2. The Chien search does not find a
root, thus C(x) is irreducible in F8. Hence, an error pattern with τ > t is found
which is uncorrectable for the BMD decoder. �

322 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

8.4 Decoding Architectures

8.4.1 Frequency-Domain Error Correction

The error-locator polynomial C(x) and the set of unknown error locations I are
known after solving the key equation. Now, we have to determine the error
magnitudes e(x)◦—•E(x). According to (8.3.10),

Ei = −
t∑

µ=1

CµEi−µ for i = 2t, . . . , n− 1 (8.4.1)

= function of (Ei−1, . . . , Ei−t).

This facilitates the principle of recursive extension: the start values are E0 =
S0, . . . , E2t−1 = S2t−1. One after the other, E2t, . . . , En−1 are computed. Tech-
nically, the recursive extension can be realized by a linear feedback shift register
(LFSR, also called autoregressive filter) as shown in Figure 8.17. The length of
the filter can be variable with τ or can be fixed to t. The start configuration is
defined by the t highest frequencies S2t−1, . . . , St of the syndrome. At the filter
output, we have the values of E2t, . . . , En−1 sequentially.

–C1

.....Ei–1 Ei–t

–Ct

E

+

Ei

Figure 8.17. Computation of E(x) by recursive extension

Figure 8.18 shows the whole method of decoding in the frequency domain.
Although the correction takes place in the time domain, the calculation of the
error magnitudes is performed in the frequency domain. Therefore we must
compute the inverse Fourier transform of E(x), so that e(x) is available in the
time domain. However, we only have to determine the components which were
detected as being erroneous. To reduce the effort we will introduce a method in
the next subsection which can directly calculate the desired error magnitudes in
the time domain.

Example 8.8. Continuation of Example 8.7 with the (7, 3, 5)8 RS code. The

8.4 Decoding Architectures 323

Solve

key

equation

Partial IDFT

S0...S2t–1

Syndrome

I
error locations

C(x)
error-locator
polynomial
of degree t

Received
word

t

µ=1
Ei = – CµEi–µ

Recursive extension

(i = 2t,...,n–1)

ei = –E(z–i), i ∈ I

y(x)

E(x)

e(x)

+

Compute
S(x)

Si = y(zi)

(i=0,...,2t–1)

+
–

a(x)

Chien search

I = {i | C(z–i)=0}

Figure 8.18. Error-correction decoder in frequency domain

parameters

(E0, E1, E2, E3) = (S0, S1, S2, S3) = (z, z3, z6, z3),
(C0, C1, C2) = (1, z6, z6),
I = {1, 5} , τ = t = 2

324 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

are already known. Recursive extension leads to

E4 = C1E3 + C2E2 = z6z3 + z6z6 = z3

E5 = C1E4 + C2E3 = z6z3 + z6z3 = 0

E6 = C1E5 + C2E4 = z60 + z6z3 = z2.

Finally,

E(x) = S0 + S1x+ S2x
2 + S3x

3 + E4x
4 + E5x

5 + E6x
6

= z + z3x+ z6x2 + z3x3 + z3x4 + z2x6.

Since we have already determined that I = {1, 5}, all we need to do is calculate
e1 and e5:

e1 = −E(z−1) = E(z6) = z + z2 + z4 + 1 + z6 + z3 = z5

e5 = −E(z−5) = E(z2) = z + z5 + z3 + z2 + z4 + 1 = z6.

Thus, the assumed error pattern e(x) = z5x+ z6x5 is the result. �

8.4.2 Time-Domain Error Correction

The objective now is to determine the error magnitudes at the desired positions
directly in the time domain without inverse Fourier transforms. As in the previ-
ous subsection, the error-locator polynomial C(x) and the set of unknown error
locations I are considered to be known after solving the key equation. According
to (8.3.9), a so-called error-evaluator polynomial T (x) exists with

C(x)E(x) = T (x)(xn − 1). (8.4.2)

T (x) does not directly show the error magnitudes, but the error magnitudes can
be calculated from T (x) as follows. For the degree of T (x),

deg T (x) = deg C(x)︸ ︷︷ ︸
=τ

+deg E(x)︸ ︷︷ ︸
≤n−1

− deg (xn − 1)︸ ︷︷ ︸
=n

≤ τ − 1.

So T (x) kann be written as

T (x) = T0 + T1x+ · · ·+ Tτ−1x
τ−1. (8.4.3)

The equation (8.4.2) is now written as

τ∑
i=0

Cix
i ·

2t−1∑
i=0

Eix
i

︸ ︷︷ ︸
from x0 onwards

+ C(x)
n−1∑
i=2t

Eix
i

︸ ︷︷ ︸
from x2t onwards

= −T (x)︸ ︷︷ ︸
until xτ−1

+ xnT (x)︸ ︷︷ ︸
until xn

,

8.4 Decoding Architectures 325

where the range of the corresponding exponents is given below the braces. The
comparison of the coefficients together with τ−1 ≤ 2t implies that the coefficient
−Tj must correspond to the j-th coefficient in the left term. The left term must
be the result of a convolutional operation:

−Tj =

j∑
µ=0

CµEj−µ for j = 0, . . . , τ − 1.

Since 0 ≤ j − µ ≤ τ − 1, Ej−µ can be replaced by Sj−µ:

Tj = −
j∑

µ=0

CµSj−µ for j = 0, . . . , τ − 1. (8.4.4)

Since only S0, . . . , Sτ−1 are used, T (x) can be calculated by using (8.4.4). Now,
with the error-locator polynomial C(x) of degree τ and the error-evaluator poly-
nomial T (x) of degree τ−1 we can determine the error magnitudes directly. The
equation (8.4.2) gives us

ei = −E(z−i) = −
[
T (x)(xn − 1)

C(x)

]
x=z−i

for i = 0, . . . , n− 1. (8.4.5)

At the error locations i ∈ I, we have C(z−i) = 0 (Chien search) and at the
same positions xn − 1 = 0 for x = z−i. So the quotient (8.4.5) for i ∈ I is of
type “0/0”. L’Hôspital’s rule (A.1.3) and formal differentiation are also valid in
Galois fields. For example, for the first derivative,

(xn)′ = nxn−1 = −xn−1,

since n = pm − 1 with modulo p. Correspondingly,

C ′(x) = C1 + 2C2x+ · · ·+ tCtx
t−1, (8.4.6)

where the coefficients 1, 2, . . . , τ , that were derived from the exponents, have to
be considered modulo p. Then l’Hôspital’s rule implies that

ei = −
[
T ′(x)(xn − 1) + T (x)(−xn−1)

C ′(x)

]
x=z−i

=

[
T (x)xn−1

C ′(x)

]
x=z−i

.

This leads to the so-called Forney algorithm

ei =
T (z−i)
C ′(z−i)

· zi for i ∈ I. (8.4.7)

All in all, we get the decoding method shown in Figure 8.19 which only differs
from Figure 8.18 in the calculation of T (x) and the Forney algorithm.

For the solution of the key equation and therefore for the calculation of
C(x), all 2t components of the syndrome are required (at least for the maxi-
mum number of errors τ = t). However, for the calculation of T (x) only the τ
lower components of the syndrome are required (accordingly only the τ upper
components are required for the recursive extension in Figure 8.18).

326 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Solve

key

equation

Chien search

I = {i | C(z–i)=0}

Forney algorithm

S0...S2t–1

Syndrome

I
error locations

C(x)
error locator
polynomial
of degree t

Received
word

j

µ=0
Tj = – CµSj–µ

Compute T(x)

(j = 0, ..., t–1)

ei =

y(x)

T(x)
error-evaluator
polynomial

e(x)

+

Compute
S(x)

Si = y(zi)

(i=0,...,2t–1)

+
–

a(x)

C(x)

(i ∈ I)
T(z– i)
C’(z– i) · zi

Figure 8.19. Error-correction decoder in time domain

Example 8.9. Continuation of Example 8.7 and 8.8 with the (7, 3, 5)8 RS code.
The following relations

(E0, E1, E2, E3) = (S0, S1, S2, S3) = (z, z3, z6, z3),
(C0, C1, C2) = (1, z6, z6) ↔ C(x) = 1 + z6x+ z6x2,
I = {1, 5} , τ = t = 2

are known. The calculation of T (x) gives us

T0 = −C0S1 = 1 · z = z
T1 = −C0S2 − C1S1 = 1 · z3 + z6 · z = z

8.5 Solving the Key Equation 327

and thus T (x) = z + zx. Differentiation leads to C ′(x) = z6 + 2z6x = z6 mod 2.
Furthermore, the Forney algorithm leads to

ei =
T (z−i)
C ′(z−i)

zi =
z + z1−i

z6
zi = z2+i + z2 =

{
z5 i = 1
z6 i = 5

}
.

So the result is, once again, the assumed error pattern e(x) = z5x + z6x5. For
i �∈ I, the Forney algorithm does not give us the correct result ei = 0 but a
wrong, non-zero value, i.e., (8.4.7) is only valid for the error locations i ∈ I. �

8.5 Solving the Key Equation

8.5.1 The Berlekamp-Massey Algorithm

It was years after the discovery of RS and BCH codes that powerful algorithms
were developed for the solution of the key equation (8.3.11) or (8.3.12). Some
of these algorithms are based on the Euclidean algorithm (found in 1975) and
will be introduced in the next subsection. A different method is the Berlekamp-
Massey algorithm (BMA, found in 1968), which we examine here a without
proof. Derivations of the BMA can be found in, e.g., [10, 17].

The equation (8.3.11) can be represented by a linear feedback shift regis-
ter (LFSR) as shown in Figure 8.20. At the beginning (i = t) the register is
initialized with St−1, . . . , S0. One after the other the values St, . . . , S2t−1 are
created at register input. However, to solve the key equation we do not have
to create the already known sequence of syndromes, but we are looking for the
filter coefficients for the sequence of syndromes, where the filter is to be of min-
imum length. Thus solving the key equation is a problem of synthesizing an
autoregressive filter.

–C1

.....Si–1 Si–t

–Ct

S0...S2t–1

+

Si

Figure 8.20. Generierung des Syndroms durch das Fehlerstellenpolynom

Figure 8.21 shows the Berlekamp-Massey algorithm. The input is the syn-
drome (S0, . . . , S2t−1) and the output is the error-locator polynomial C(x) =
C(j)(x) with the stop condition j = 2t.

328 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

2e > j ?

Initialize:

error-locator polynomial
auxiliary polynomial
counters

C(0)(x) = 1
B(0)(x) = 0

e = 0
j = 0

k = 0

e

µ=1
∆j = Sj + Cµ Sj–µ = 0 ?

(j)

C(j+1)(x) = C(j)(x) – ∆jxkB(j)(x) C(j+1)(x) = C(j)(x)

j ≥ 2t ?

B(j+1)(x) = ∆j C(j)(x) B(j+1)(x) = B(j)(x)

k = k+1

j = j+1

Stop

yes

yes

yesno

no

no

–1

e = j+1–e
k = 1

Figure 8.21. The Berlekamp-Massey algorithm

We present only a short descriptive explanation of the BMA. The counter
e runs through the length of the filter and j runs through the length of the se-
quence of syndromes synthesized up until now. At ∆j = 0? a check is made to
see whether we can create the next Sj using the current C(j)(x) and the current
length e. If not then the filter coefficients are modified. Then at 2eold ≤ j the
filter is extended: enew = j+1− eold ≥ eold+1. Furthermore the auxiliary poly-

8.5 Solving the Key Equation 329

nomial B(x) is used as a temporary buffer for the last-but-one C(x). Without
the extension of the filter, B(x) remains unchanged. Finally, j is incremented
in any case. During the whole algorithm, j ≥ e and j ≤ 2t− 1 are always valid
so that at ∆j = 0? only the known syndrome values S0, . . . , S2t−1 are required.

An error pattern which is uncorrectable for the BMD decoder is detected,
if, after the termination of the BMA, the degree of the calculated polynomial
C(x) is unequal to e or if deg C(x) = e > t or if the Chien search finds fewer
than deg C(x) roots in the polynomial C(x).

Example 8.10. Continuation of Example 8.7 with the (7, 3, 5)8 RS code and
t = 2 and l = 0. For the syndrome of the error pattern e(x) = z5x + z6x5,
(S0, S1, S2, S3) = (z, z3, z6, z3). The BMA works as follows:

e k j ∆j C(j+1)(x) 2e > j B(j+1)(x)
0 0 0 z 1 no z6

1 1 1 z3 1 + z2x yes z6

1 2 2 z 1 + z2x+ x2 no z6 + zx
2 1 3 z 1 + z6x+ z6x2 yes z6 + zx
2 2 4 Stop

The comparison with Example 8.7 shows that the result C(x) = C(4)(x) =
1 + z6x+ z6x2 is correct. �

In Table 8.6, the necessary addition-and-multiplication operations for the
decoding of RS codes are approximately summarized. The BMA reduces the
effort for solving the key equation from t3 to t2 and is therefore unproblematic.
The error correction in the time domain is less time-consuming than in the
frequency domain. The biggest effort is caused by the partial transformations
for calculating the syndrome, by the Chien search and by the encoder. However,
the effort can be reduced by using fast algorithms [17, 18] as well as using various
symmetries which exist in some cases. Many hints and ideas for implementing
the algorithms are given in [79] and especially in [145]. For binary BCH codes,
there are enormous simplifications which will be discussed in Section 8.7.

The equation (8.3.9) is valid regardless of where the parity frequencies are
situated. So if, instead of S0, . . . , S2t−1, the values Sl, . . . , Sl+2t−1 are known,
then we only have to shift the indices into the range of 0, . . . , 2t − 1. The key
equation (8.3.11) takes on the form

Si +

τ∑
µ=1

CµSj−µ = 0 for i = l + τ, . . . , l + 2τ − 1 (8.5.1)

and the switch condition on ∆j in the BMA is to be changed into

∆j = Sj+l +
e∑

µ=1

C(j)
µ Sj−µ+l = 0 ? (8.5.2)

330 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Table 8.6. Number of GF operations for RS coding

Partial algorithm Number of add/mult-ops in Fpm

calculation of syndrome 2t · n
Berlekamp-Massey algorithm t2 to 2t2

direct solution of key equation t3

recursive extension t(n− 2t)

partial IDFT t · n
calculation of T (x) t2/2

Forney algorithm 2t2

Chien search t · n
subtraction of the error magnitudes t additions

systematic encoder 2t(n− 2t)

Of course, we still need to modify the recursive extension in Figure 8.18 and the
calculation of T (x) in Figure 8.19 accordingly.

8.5.2 The First Version of the Euclidean Algorithm

(EA1)

Now, we will introduce two methods for solving the key equation, both based
on the Euclidean Algorithm (EA, see Theorem A.8), whose advantages and
disadvantages over the BMA have to be considered for each case. The EA
methods not only determine the error-locator polynomial C(x) of degree τ from
the syndrome S(x) of degree ≤ 2t − 1, but also the error-evaluator polynomial
T (x) of degree τ −1. Let t = (dmin−1)/2 = (n−k)/2 be the maximum number
of errors and τ be the actual number of errors with τ ≤ t.

Theorem 8.9 (Version EA1). We use the polynomials

a(x) = r−2(x) = x2t , b(x) = r−1(x) = S(x) (8.5.3)

for the start configuration of the EA. The recursive scheme of Theorem A.8 in
Fpm [x] leads to a series of polynomials ri(x) of decreasing degree such that there
exists an index λ with

deg rλ−1(x) ≥ t and deg rλ(x) < t. (8.5.4)

At the same time the recursion for the polynomial ti(x) is computed. With the
constant γ = 1/tλ(0) ∈ Fpm we have

C(x) = γ · tλ(x) , T (x) = −γ · rλ(x) (8.5.5)

8.5 Solving the Key Equation 331

for the error-locator and the error-evaluator polynomial.

Proof. Although the recursion for the polynomial si(x) is used for this proof,
it does not have to be calculated in practical applications of the algorithm.
According to (A.7.6), the recursive polynomials are linked as

rλ(x) = sλ(x)x
2t + tλ(x)S(x). (8.5.6)

According to (A.7.16),

deg tλ(x) = deg a(x)︸ ︷︷ ︸
=2t

− deg rλ−1(x)︸ ︷︷ ︸
≥t

≤ t.

The main equation (8.4.2) can be written as

(xn − 1)T (x) = C(x)E(x) = C(x)

(
S(x) +

n−1∑
i=2t

Eix
i

)

and with an appropriate polynomial L(x) we then have

−T (x) = C(x)S(x) + x2tL(x). (8.5.7)

The multiplication of (8.5.6) by C(x) together with (8.5.7) leads to

C(x)rλ(x)︸ ︷︷ ︸
deg<t+τ

= C(x)sλ(x)x
2t + C(x)S(x)tλ(x)

= −T (x)tλ(x)︸ ︷︷ ︸
deg<τ+t

+
(
C(x)sλ(x)− L(x)tλ(x)

)
x2t︸ ︷︷ ︸

deg≥2t

.

Comparing the degrees gives us

C(x)sλ(x) = L(x)tλ(x), (8.5.8)

C(x)rλ(x) = −T (x)tλ(x). (8.5.9)

The error-locator polynomial C(x) has the roots z−i for i ∈ I. Since these zeros
are only singular, C ′(z−i) �= 0 must be valid for the first derivative and the
Forney algorithm (8.4.7) implies that T (z−i) �= 0 for i ∈ I. Thus, according
to (8.5.9), C(x) has to be a factor of tλ(x), hence, there exists a polynomial
β(x) = tλ(x)/C(x). Trivially, β(x) is a factor of tλ(x) and, according to (8.5.8),
β(x) is also a factor of sλ(x). However, according to (A.7.10), sλ(x) and tλ(x)
do not have a common divisor, thus β(x) = γ−1 is a constant that is determined
from γ−1 = β(0) = tλ(0)/C(0) = tλ(0). Thus C(x) = γ · tλ(x) is obvious and
T (x) = −γ · rλ(x) is implied by (8.5.9). �

332 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Example 8.11. As in Example 8.7, we will consider the (7, 3, 5)8 RS code with
t = 2 and the error pattern e(x) = z5x+z6x5 with S(x) = z+z3x+z6x2+z3x3.
The EA leads to the recursive scheme

x4︸︷︷︸
r−2(x)

= z4x︸︷︷︸
α0(x)

· (z3x3 + z6x2 + z3x+ z)︸ ︷︷ ︸
r−1(x)

+ (z3x3 + x2 + z5x)︸ ︷︷ ︸
r0(x)

(z3x3 + z6x2 + z3x+ z)︸ ︷︷ ︸
r−1(x)

= 1︸︷︷︸
α1(x)

· (z3x3 + x2 + z5x)︸ ︷︷ ︸
r0(x)

+ (z2x2 + z2x+ z)︸ ︷︷ ︸
r1(x)

(z3x3 + x2 + z5x)︸ ︷︷ ︸
r0(x)

= (zx+ z6)︸ ︷︷ ︸
α2(x)

· (z2x2 + z2x+ z)︸ ︷︷ ︸
r1(x)

+ (x+ 1)︸ ︷︷ ︸
r2(x)

.

Thus λ = 2. According to (A.7.3), the ti(x) recursion is

t0(x) = t−2(x)− α0(x)t−1(x) = z4x
t1(x) = t−1(x)− α1(x)t0(x) = 1 + z4x
t2(x) = t0(x)− α2(x)t1(x) = z6 + z5x+ z5x2.

Thus γ = 1/tλ(0) = z and, according to Theorem 8.9, C(x) = zt2(x) = 1 +
z6x + z6x2 as well as T (x) = −zr2(x) = z + zx, which are equal to the results
of Examples 8.7 and 8.9. �

8.5.3 The Second Version of the Euclidean Algorithm

(EA2)

An alternative application of the EA for determining C(x) and T (x) is based on
the complementary error-locator polynomial of degree n− |I| = n− τ :

C∗(x) =
∏
i�∈I

(1− xzi). (8.5.10)

While keeping {z0, . . . , zn−1} = {z−0, . . . , z−(n−1)} in mind, according to
(7.2.13),

C(x)C∗(x) =
n−1∏
i=0

(1− xzi) =

(
n−1∏
i=0

(−zi)

)
·
(
n−1∏
i=0

(x− z−i)

)

= ∆ · (xn − 1) with ∆ ∈ Fpm. (8.5.11)

For i ∈ I, C∗(x) has the roots z−i and ei = −E(z−i) = 0. So C∗(x) splits up
into linear factors which are also linear factors of E(x), thus C∗(x) is a factor of
xn − 1 as well as of E(x). Since C(x) is to have a minimum degree and C∗(x)
is to have a maximum degree,

C∗(x) = GCD
(
E(x), xn − 1

)
. (8.5.12)

8.5 Solving the Key Equation 333

Now, we perform a cyclic shift of n − 2t positions to the right on E(x), such
that the known syndromes are in the higher frequencies and the unknown error
magnitudes are in the lower frequencies:

Es(x) = Rxn−1[x
n−2tE(x)] ↔ (E2t, . . . , En−1, S0, . . . , S2t−1). (8.5.13)

According to Theorem 7.8, this implies a multiplication for es(x)◦—•Es(x) in
the time domain, hence es,i = ei · z−i(n−2t) for the coefficients of es(x). Since the
error magnitudes do not move, E(x) and Es(x) have the same roots, thus

C∗(x) = GCD
(
Es(x), x

n − 1
)
. (8.5.14)

Corresponding to (8.4.2), there is a representation

C(x)Es(x) = Ts(x)(x
n − 1), (8.5.15)

where Ts(x) is the error-evaluator polynomial for es(x).

Theorem 8.10 (Version EA2). We choose the polynomials

a(x) = r−2(x) = xn − 1 , b(x) = r−1(x) = Es(x) (8.5.16)

for the start configuration of the EA. The recursive scheme of Theorem A.8 in
Fpm [x] leads to a series of polynomials ri(x) of decreasing degree such that there
exists a minimum index λ with

deg rλ+1(x) < n− t. (8.5.17)

At the same time, the recursions for the polynomials si(x) and ti(x) are com-
puted. With the constant γ = 1/tλ+1(0) ∈ Fpm we have

C(x) = γ · tλ+1(x) , Ts(x) = −γ · sλ+1(x) (8.5.18)

for the error-locator and the error-evaluator polynomial.

Proof. According to Theorem A.8, there exists an index λ with

rλ(x) = GCD(xn − 1, Es(x)) = C∗(x) and rλ+1(x) = 0.

So, for i ≤ λ, deg ri(x) ≥ deg rλ(x) = n−τ ≥ n− t and for i ≥ λ+1, ri(x) = 0.
According to (A.7.5),

(−1)λtλ+1(x) =
xn − 1

GCD(xn − 1, Es(x))
=

xn − 1

C∗(x)
= ∆−1C(x),

−(−1)λsλ+1(x) =
Es(x)

GCD(xn − 1, Es(x))
=

Es(x)

C∗(x)
= ∆−1Ts(x),

334 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

where (8.5.11) implies the right hand side of the equalities. The polynomial
C(x) = ∆(−1)λtλ+1(x) with x = 0 implies that γ = ∆(−1)λ = 1/tλ+1(0). So
the proof is complete. Finally, (A.7.15) and (A.7.16) can be used to verify the
correct degrees of C(x) and Ts(x). �

Because of the special relation of the degrees, the EA can actually be per-
formed, although only the upper 2t powers of Es(x) are known. Here is an
example that makes this quite clear:

Example 8.12. We make the same presumptions as for Example 8.11 with the
error pattern e(x) = z5x+ z6x5. The shift in the frequency domain leads to

es(x) = z5−1·3x+ z6−5·3x5 = z2x+ z5x5

in the time domain. In fact, we do not know the polynomials es(x) or Es(x)
completely but only

Es(x) = (E4, E5, E6, S0, S1, S2, S3) = (, z, z3, z6, z3),

where the coefficients E4, E5, E6 are unknown. With the start configuration of
r−2(x) = xn − 1 = x7 + 1 and r−1(x) = Es(x) the EA gives us the recursive
scheme

(x7 + 1)︸ ︷︷ ︸
r−2(x)

= (z4x+ 1)︸ ︷︷ ︸
α0(x)

· (z3x6 + z6x5 + z3x4 + zx3 + . . .)︸ ︷︷ ︸
r−1(x)

+ (z2x5 + z2x4 + . . .)︸ ︷︷ ︸
r0(x)

(z3x6 + z6x5 + z3x4 + zx3 + . . .)︸ ︷︷ ︸
r−1(x)

= (zx + z2)︸ ︷︷ ︸
α1(x)

· (z2x5 + z2x4 + . . .)︸ ︷︷ ︸
r0(x)

+ (x4 . . .)︸ ︷︷ ︸
r1(x)

.

With deg r1(x) < n− t = 5 we have λ = 0. So inevitably r1(x) = 0. According
to (A.7.3),

t0(x) = t−2(x)− α0(x)t−1(x) = z4x+ 1

t1(x) = t−1(x)− α1(x)t0(x) = 1 + (zx+ z2)(z4x+ 1) = z5x2 + z5x+ z6

for the ti(x) recursion, and

s0(x) = s−2(x)− α0(x)s−1(x) = 1

s1(x) = s−1(x)− α1(x)s0(x) = zx+ z2

for the the si(x)-recursion. The polynomials of (8.5.18) with γ = 1/t1(0) = z
give us our usual results C(x) = zt1(x) = 1 + z6x + z6x2 as well as Ts(x) =
zs1(x) = z3 + zx. The Forney algorithm with

es,i =
Ts(z

−i)
C ′(z−i)

=
z3 + z2−i

z6
zi =

{
z2 i = 1
z5 i = 5

}
implies the correct result for es(x). �

8.6 Error-and-Erasure Decoding with RS Codes 335

8.6 Error-and-Erasure Decoding with RS

Codes

8.6.1 Overview and Decoding Capability

We presuppose a q-ary symmetric channel with erasures as a generalization of
the BSEC of Figure 1.4:

Ain = Fq , Aout = Fq ∪ {?}. (8.6.1)

The demodulator decides on y = ? (erasure), if the decision on a specific y ∈ Fq
was too unreliable. The advantage of this method is that the correction of such
an erasure (position known, transmitted symbol unknown) only requires one
parity-check symbol, whereas to correct an error (position unknown, transmit-
ted symbol and error symbol unknown) two parity-check symbols are required.
Formally, the received word as an extension to (8.3.1) is described by

y = a + e + v , (8.6.2)

where a ∈ Fn
q is the codeword, e ∈ Fn

q is the error word and v ∈ {0, ?}n is
the erasure word. As the components yi and vi can take on the value ?, the
arithmetic operations between ? and b ∈ Fq are formally defined as

b+? = ? , b·? = ? für b �= 0 , 0·? = 0. (8.6.3)

In addition to the set of unknown error locations I and the error-locator poly-
nomial C(x), we will now introduce the set of known erasure locations Iv and
the erasure-locator polynomial Cv(x):

I = {i | ei �= 0} , C(x) =
∏
i∈I

(1− xzi), (8.6.4)

Iv = {i | vi = ?} , Cv(x) =
∏
i∈Iv

(1− xzi). (8.6.5)

Per definition, an erasure is not considered to be an error, thus I and Iv are
disjoint. Of course, I and C(x) are unknown, whereas Iv and Cv(x) are known.
Let τ = |I| = deg C(x) be the unknown number of errors and τv = |Iv| =
deg Cv(x) be the known number of erasures. The decoding method described
below proves the following theorem.

Theorem 8.11 (Error-and-Erasure Decoding). An (n, n − 2t, 2t+ 1)q RS
code corrects τ errors and τv erasures, if

2τ + τv ≤ 2t = dmin − 1 = n− k. (8.6.6)

336 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

For τ = 0 and τv = n − k, this corresponds to the statement of Theorem 4.8,
because k arbitrary correct positions in the codeword uniquely determine the
whole codeword. The calculation of the error probability for the error-and-
erasure correction will be covered in Theorem 11.1?.

The decoding is performed in two major steps. The first step completely
eliminates the influence of erasures by using a trick, so that the usual methods
of error correction can be applied. Then the second step corrects the erasures.

8.6.2 First Step: Error Correction

For i ∈ Iv, cv,i = −Cv(z
−i) = 0 and for i �∈ Iv, vi = 0. Thus vicv,i = 0 for

0 ≤ i ≤ n− 1. The representation (8.6.2) implies that

yicv,i︸︷︷︸
ỹi

= aicv,i︸ ︷︷ ︸
ãi

+ eicv,i︸︷︷︸
ẽi

+ vicv,i︸︷︷︸
0

. (8.6.7)

Since I and Iv are disjoint, the combination ei �= 0 and cv,i = 0 is impossible,
thus ei = 0 is equivalent to ẽi = 0. Therefore the influence of the erasures is
completely eliminated in ỹ = ã + ẽ, and the error locations remain unchanged.
However, the error magnitudes have been modified and the syndrome is reduced
by τv components, as we will see shortly. According to Theorem 7.8, the trans-
formation of (8.6.7) into the frequency domain leads to

Rxn−1[−Y (x)Cv(x)]︸ ︷︷ ︸
Ỹ (x)

= Rxn−1[−A(x)Cv(x)]︸ ︷︷ ︸
Ã(x)

+Rxn−1[−E(x)Cv(x)]︸ ︷︷ ︸
Ẽ(x)

. (8.6.8)

The product A(x)Cv(x) has the degree ≤ (n − 1) + τv, so that the upper τv
powers are added to the lower powers by the modulo (xn − 1) operation:

A = (0, . . . , 0︸ ︷︷ ︸
2t zeros

, A2t, . . . , An−1︸ ︷︷ ︸
n− 2t positions

),

Ã = (Ã0, . . . , Ãτv−1︸ ︷︷ ︸
τv positions

, 0, . . . , 0︸ ︷︷ ︸
2t−τv zeros

, Ã2t, . . . , Ãn−1︸ ︷︷ ︸
n−2t positions

). (8.6.9)

Thus, for the syndrome, we can only use the 2t− τv positions of the error word,
which are left unchanged by the codeword, thus S̃ = (Ẽτv , . . . , Ẽ2t−1) is the new
syndrome. According to the presupposition (8.6.6), 2τ ≤ 2t− τv, and therefore
τ errors are correctable. For solving the key equation, we now have to note that,
according to (8.3.10) or (8.5.2),

Ẽi +
τ∑

µ=1

CµẼi−µ = 0 for i = τv + τ, . . . , τv + 2τ − 1. (8.6.10)

8.6 Error-and-Erasure Decoding with RS Codes 337

Since all indices of Ẽi are within the range of τv, . . . , τv +2t− 1, Ẽi corresponds
to the known syndrome S̃i. So, the τ equations of (8.6.10) completely determine
the τ unknowns C1, . . . , Cτ .

So now the error-locator polynomial C(x) is given. The error correction
can be performed similarly to Subsection 8.4.1 or 8.4.2 or the errors can be
interpreted as erasures for the decoding to come, since their locations are now
known. Therefore, from now on we will only need to consider the correction of
erasures.

8.6.3 Second Step: Erasure Correction

After the first step, we can now assume that the received word is superimposed
by erasures only, so for y = a + v ,

Iv = {i | vi = ?} , Cv(x) =
∏
i∈Iv

(1− xzi),

τv = |Iv| = deg Cv(x) ≤ 2t,
(8.6.11)

where Iv, Cv(x) and τv known. In the frequency domain,

Y = A+V = (V0, . . . , V2t−1, A2t + V2t, . . . , An−1 + Vn−1). (8.6.12)

For the actual calculation, yi is set to zero at the erasure locations. According
to the first step, vicv,i = 0 for 0 ≤ i ≤ n− 1, and according to Theorem 7.8, we
have our usual implication of

Rxn−1[Cv(x)V (x)] = 0, (8.6.13)

or equivalently expressed by the cyclic convolution,

τv∑
µ=0

Cv,µV(i−µ) mod n = 0 für i = 0, . . . , n− 1. (8.6.14)

So a recursive extension of the components V2t, . . . , Vn−1 is possible from the
known values V0, . . . , V2t−1 with

Vi = −
τv∑
µ=1

Cv,µVi−µ for i = n− 2t, . . . , n− 1 (8.6.15)

= function of (Vi−1, . . . , Vi−τv).

With the inverse transform vi = −V (z−i), erasure correction can be performed
in the frequency domain. An alternative is the erasure correction in the time
domain: according to (8.6.13), there exists an error-evaluator polynomial Tv(x)
of degree ≤ τv − 1 with

Cv(x)V (x) = Tv(x)(x
n − 1). (8.6.16)

338 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Then, corresponding to (8.4.4),

Tv,j = −
j∑

µ=0

Cv,µVj−µ for j = 0, . . . , τv − 1 (8.6.17)

and the Forney algorithm is

vi =
Tv(z

−i)
C ′
v(z

−i)
· zi for i ∈ Iv. (8.6.18)

Example 8.13. As in Examples 8.7 to 8.12, we again consider the (7, 3, 5)8 RS
code with t = 2 and

a = (z5, z3, z2, z, z4, z6, 1) ◦—• (0, 0, 0, 0, 1, z, z2) unknown,
e = (0, 0, 0, 0, 0, z5, 0) d.h. τ = 1, I = {5} unknown,
v = (0, ?, 0, 0, ?, 0, 0) d.h. τv = 2, Iv = {1, 4} known.

For the received word y = (z5, ?, z2, z, ?, z6 + z5 = z, 1), the receiver knows the
erasure-locator polynomial Cv(x) = (1− xz1)(1− xz4) = 1 + z2x+ z5x2.

Step 1: error correction or location of errors. The equation cv,i =
−Cv(z

−i) = 1 + z2−i + z5−2i implies that cv = (z, 0, z, 1, 0, z3, z3). Thus the
receiver can create ỹ = (z6, 0, z3, z, 0, z4, z3), according to (7.10.7). Since

Ỹ = (Ỹ0, Ỹ1, Ẽ2, Ẽ3, Ỹ4, Ỹ5, Ỹ6)

we only need to determine Ỹi = ỹ(zi) = Ẽi for i = 2, 3:

Ẽ2 = Ỹ2 = ỹ(z2) = z6 + z3(z2)2 + z(z2)3 + z4(z2)5 + z3(z2)6 = z4

Ẽ3 = Ỹ3 = ỹ(z3) = z6 + z3(z3)2 + z(z3)3 + z4(z3)5 + z3(z3)6 = z2.

The key equation (8.6.10) is Ẽ3 + C1Ẽ2 = 0 implying that C1 = −Ẽ3/Ẽ2 = z5.
Thus C(x) = C0 + C1x = 1− xz5 which implies the correct result for I = {5}.
From now on we will treat this located error as an erasure.

Step 2: erasure correction for Iv = {1, 4, 5} with τv = 3. The received word
is y = (z5, ?, z2, z, ?, ?, 1) and the error-locator polynomial is

Cv(x) = (1− xz1)(1− xz4)(1− xz5) = 1 + z3x+ z4x2 + z3x3.

With 0 for ?, Yi = y(zi) = z5 + z2+2i + z1+3i + z6i implies that

Y = (0, z, z2, 0, z, 0, z3) = (V0, V1, V2, V3, Y4, Y5, Y6).

The recursive extension with Vi = Cv,1Vi−1 + Cv,2Vi−2 + Cv,3Vi−3 as in (8.6.15)
leads to

V4 = z3V3 + z4V2 + z3V1 = 0 + z6 + z4 = z3

V5 = z3V4 + z4V3 + z3V2 = z6 + 0 + z5 = z
V6 = z3V5 + z4V4 + z3V3 = z4 + 1 + 0 = z5.

8.7 Decoding of Binary BCH Codes 339

Thus, the correct result is

A = Y −V = (0, 0, 0, 0, z − z3 = 1, 0− z = z, z3 − z5 = z2).

Inverse discrete Fourier transform (IDFT) leads to ai = −A(z−i) for i ∈ Iv. For
the alternative erasure correction in the time domain, we first determine Tv(x)
according to (8.6.17):

Tv,0 = Cv,0V0 = 0
Tv,1 = Cv,0V1 + Cv,1V0 = z
Tv,2 = Cv,0V2 + Cv,1V1 + Cv,2V0 = z.

Thus Tv(x) = zx+ zx2. The first derivative of Cv(x) is

C ′
v(x) = z3 + 2z4x+ 3z3x2 = z3 + z3x2.

Then, according to (8.6.18), the Forney algorithm is

vi =
Tv(z

−i)
C ′
v(z

−i)
zi =

z1−i + z1−2i

z3 + z3−2i
zi.

For i ∈ Iv we get the correct results v1 = z3, v4 = z4 and v5 = z6. �

A modified Berlekamp-Massey algorithm (BMA) for error-and-erasure de-
coding can be found in [64]. A correspondingly modified Euclidean algorithm
(EA) and its implementation are introduced in [224].

8.6.4 Encoding per Erasure Decoder

An erasure-location decoder can also be used for the systematic encoding of
RS codes as follows. According to Theorem 3.8, the k information symbols
uniquely determine the whole codeword or the n− k parity-check symbols. For
the encoding-by-decoding method a word is created containing the information
symbols but the unknown parity-check symbols are replaced by erasures. Then
the erasure-locator decoder determines the desired parity-check symbols at the
erasure locations without any further manipulations of the other positions. The
advantage of this method is that encoder and decoder are identical.

8.7 Decoding of Binary BCH Codes

In contrast to the general RS codes, the decoding algorithm for binary BCH
codes is so much simpler that we will discuss the corresponding methods sepa-
rately in this section. We presuppose the (2m − 1, k, dmin)2 narrow-sense BCH

340 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

code as in (8.2.2) with 2t = d − 1 ≤ dmin − 1 ≤ n − k and n = 2m − 1. So we
need to determine the syndromes

Si = y(zi) = e(zi) für i = 1, . . . , 2t. (8.7.1)

Unfortunately, it is of no use for decoding purposes that there are further fre-
quencies in the received word which are not affected by the transmitted code-
word, in other words, decoding can only take place with regards to the designed
distance d although the actual minimum distance dmin might be larger.

The calculation of S = (S1, . . . , S2t) in F2m can be simplified as follows.
According to Theorem A.4, for the received word y(x) ∈ F2[x] and the minimal
polynomials f[zi](x) ∈ F2[x], there exist polynomials αi(x), ri(x) ∈ F2[x] with

y(x) = αi(x)f[zi](x) + ri(x) with deg ri(x) < deg f[zi](x) ≤ m. (8.7.2)

For i = 1, . . . , 2t, many of the minimal polynomials are, of course, identical, so
many of the polynomials ri(x) are also identical. For x = zi, (8.7.2) implies that

Si = y(zi) = ri(z
i). (8.7.3)

Since y(x) can have a degree up to 2m − 2, but ri(x) can only have a much
smaller degree of a maximum of m, calculating the syndrome over ri(x) is not
as time-consuming as using (8.7.1). Furthermore, according to Theorem 7.9,
we only need to determine the syndromes with an odd index because S2i = S2

i .
Similar to (8.3.13), the syndrome can also be represented by

Sr = Er =

n−1∑
µ=0

eµz
rµ =

∑
i∈I

zri. (8.7.4)

In the binary case, ei �= 0 is equivalent to ei = 1, so determining the error
locations is the last step of decoding. As in Definiton 8.4, each error pattern
e(x) is mapped to the set of unknown error locations

I = {i | 0 ≤ i ≤ n− 1 ∧ ei �= 0} (8.7.5)

= {i | 0 ≤ i ≤ n− 1 ∧ ei = 1}
with |I| = τ ≤ t and e(x) is also mapped to the error-locator polynomial

C(x) =
∏
i∈I

(1− xzi) = 1 + C1x+ · · ·+ Cτx
τ . (8.7.6)

The key equation changes from (8.3.12) to

−Sτ+1

−Sτ+2

...

−S2τ−1

−S2τ

=

S1 S2 · · · Sτ−1 Sτ
S2 S3 · · · Sτ Sτ+1

...
...

...
...

Sτ−1 Sτ · · · S2τ−3 S2τ−2

Sτ Sτ+1 · · · S2τ−2 S2τ−1

·

Cτ

Cτ−1

...

C2

C1

(8.7.7)

8.7 Decoding of Binary BCH Codes 341

because of the different positions of the parity frequencies. The solution of this
linear equation system can be simplified quite a bit (in contrast to the general
case with RS codes), for which we will again have to derive the relation between
C(x) and E(x) or S . Similar to the Forney algorithm in Subsection 8.4.2, the
first derivative of the error-locator polynomial is

C ′(x) =

(∏
i∈I

(1− xzi)

)′

=
∑
i∈I

(−zi)

∏
j∈I\{i}

(1− xzj)

= −
∑
i∈I

zi
C(x)

1− xzi
.

The multiplication by x and using the sum of the geometric series leads to

xC ′(x) = −C(x)
∑
i∈I

xzi

1− xzi
= −C(x)

∞∑
r=1

(∑
i∈I

zir

)
xr.

An appropriate series expansion gives us the representation

0 = xC ′(x) + C(x)

∞∑
r=1

Er mod nz
i

= (C1x+ 2C2x
2 + 3C3x

3 + · · ·+ τCτx
τ)

+ (1 + C1x+ C2x
2 + · · ·+ Cτx

τ)

· (S1x+ S2x
2 + · · ·+ S2τx

2τ + E2τ+1x
2τ+1 + · · ·)

= x(C1 + S1)+

x2(2C2 + S2 + C1S1)+

x3(3C3 + S3 + C1S2 + C2S1) + · · ·+
xτ (τCτ + Sτ + C1Sτ−1 + · · ·+ Cτ−1S1)+

xτ+1(Sτ+1 + C1Sτ + · · ·+ CτS1) + · · ·+
x2τ (S2τ + C1S2τ−1 + · · ·+ CτSτ) + · · ·

The result is the following system of equations (note that −1 = 1 in F2):

S1

S2

S3
...
Sτ
Sτ+1
...

S2τ

=

1
S1 2
S2 S1 3
...

...
...

Sτ−1 Sτ−2 Sτ−3 · · · S1 τ
Sτ Sτ−1 Sτ−2 · · · S2 S1
...

...
...

...
...

S2τ−1 S2τ−2 S2τ−3 · · · Sτ+1 Sτ

·

C1

...

Cτ

. (8.7.8)

This system has 2τ equations to determine the τ unknowns C1, . . . , Cτ and
thus to determine the error locations. Each component of the syndrome is

342 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

known, even if, in (8.7.8), τ is replaced by t. Since S2i = S2
i , we can drop every

second equation and all syndromes can be described as powers of syndromes
with odd indices: S2 = S2

1 , S4 = S4
1 , S6 = S2

3 , S8 = S8
1 etc. Furthermore,

1 = 3 = 5 = 7 = · · · = 1 in F2, so for odd τ , (8.7.8) is reduced to

S1

S3
...
Sτ
Sτ+2
...

S2τ−1

=

1
S2 S1 1
...

...
...

Sτ−1 Sτ−2 Sτ−3 · · · S1 1
Sτ+1 Sτ Sτ−1 · · · S3 S2
...

...
...

...
...

S2τ−2 S2τ−3 S2τ−4 · · · Sτ Sτ−1

·

C1

...

Cτ

(8.7.9)

and for even τ it is reduced to

S1

S3
...

Sτ−1

Sτ+1
...

S2τ−1

=

1
S2 S1 1
...

...
...

Sτ−2 Sτ−3 Sτ−4 · · · 1
Sτ Sτ−1 Sτ−2 · · · S2 S1
...

...
...

...
...

S2τ−2 S2τ−3 S2τ−4 · · · Sτ Sτ−1

·

C1

...

Cτ

. (8.7.10)

In both cases the matrix is (τ, τ)-dimensional. The direct solution of this equa-
tion system is also known as Peterson’s direct-solution decoder . We will now
determine the direct solution for τ = 1, 2, 3. For τ = 1,

S1 = 1 · C1 ⇒ C1 = S1.

For τ = 2,(
S1

S3

)
=

(
1 0
S2
1 S1

)
·
(

C1

C2

)
⇒
{

C1 = S1

C2 = (S3
1 + S3)/S1.

For τ = 3,
 S1

S3

S5

 =

 1 0 0

S2
1 S1 1

S4
1 S3 S2

1

 ·

 C1

C2

C3

 ⇒

C1 = S1

C2 = (S2
1S3 + S5)/(S

3
1 + S3)

C3 = S3
1 + S3 + S1C2.

Further explicit formulas for τ = 4, 5, 6 can be found, for example, in [95]. We
can easily verify that these solutions satisfy the key equation in the standard
form of (8.7.7).

The number τ of errors in the received word is, of course, unknown, but
we can use a similar method as in Section 7.5 to determine τ . The system of
equations (8.7.9) or (8.7.10) is stated with t instead of τ . If τ = t or τ = t− 1,

8.7 Decoding of Binary BCH Codes 343

then the matrix is non-singular [83, 105] and the equation system is solvable.
For τ = t − 1 we then have Ct = 0. However, if τ ≤ t − 2, then the matrix
is singular, in which case the two bottom rows and the two right-hand columns
are deleted and the resulting matrix is checked for singularity. This procedure
is repeated until a non-singular matrix is found.

Example 8.14. Consider the (15, 5, 7)2 BCH code of Example 8.5(3) with t = 3
and the generator polynomial

g(x) = f[z](x) · f[z3](x) · f[z5](x)
= (x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1)

= x10 + x8 + x5 + x4 + x2 + x+ 1.

(1) Assume e(x) = 1 + x4 + x10 to be an error pattern, then the syndrome
is Si = y(zi) = 1 + z4i + z10i, thus

S1 = 1 + z4 + z10 = z8

S2 = 1 + z8 + z5 = z = S2
1

S3 = 1 + z12 + 1 = z12

S4 = 1 + z + z10 = z2 = S4
1

S5 = 1 + z5 + z5 = 1
S6 = 1 + z9 + 1 = z9 = S2

3 .

For the alternative calculation of the syndrome according to (8.7.3),

r1(x) = Rx4+x+1[e(x)] = x2 + 1
r3(x) = Rx4+x3+x2+x+1[e(x)] = x3 + x2 + x+ 1
r5(x) = Rx2+x+1[e(x)] = 1

with the same result of

S1 = r1(z) = z2 + 1 = z8

S2 = r1(z
2) = z4 + 1 = z

S3 = r3(z
3) = z9 + z6 + z3 + 1 = z12

S4 = r1(z
4) = z8 + 1 = z2

S5 = r5(z
5) = 1 = 1

S6 = r3(z
6) = z3 + z12 + z6 + 1 = z9.

The equation system (8.7.9) is
 z8

z12

1

 =

 1 0 0

z z8 1
z2 z12 z

 ·

 C1

C2

C3

 ⇒

C1 = z8

C2 = z13

C3 = z14

and the result C(x) = 1 + z8x+ z13x2 + z14x3 = (1 + xz0)(1 + xz4)(1 + xz10) is
obviously the correct error-locator polynomial.

344 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

(2) Consider the error pattern e(x) = 1 + x4 with the syndrome

(S1, S2, S3, S4, S5, S6) = (z, z2, z11, z4, z10, z7).

The equation system (8.7.9) is
 z

z11

z10

 =

 1 0 0

z2 z 1
z4 z11 z2

 ·

 C1

C2

C3

 ⇒

C1 = z
C2 = z4

C3 = 0

und the result C(x) = 1 + zx + z4x2 = (1 + xz0)(1 + xz4) is the correct error-
locator polynomial.

(3) Now take a look at the error pattern e(x) = x4 with the syndrome

(S1, S2, S3, S4, S5, S6) = (z4, z8, z12, z, z5, z9).

The equation system (8.7.9) is
 z4

z12

z5

 =

 1 0 0

z8 z4 1
z z12 z8

 ·

 C1

C2

C3

 .

The matrix is singular since its determinant is zero. Reducing it by one or two
dimensions leads to(

z4

z12

)
=

(
1 0
z8 z4

)
·
(

C1

C2

)
or to z4 = 1 · C1.

In both cases the solution is C1 = z4 and C2 = 0, so again the error-locator
polynomial C(x) = 1 + xz4 is correct. �

The condition in the Berlekamp-Massey algorithm (BMA) takes on the form
(8.5.2) with l = 1 for binary narrow-sense BCH codes. Elementary operations
lead to ∆0 = S1, ∆1 = S2, ∆2 = S3 + S1S2. Furthermore, according to [17],

∆3 = ∆5 = ∆7 = · · · = 0, (8.7.11)

so every second iteration in the BMA can be omitted.

Example 8.15. Continuation of Example 8.14(1) with the syndrome

(S1, S2, S3, S4, S5, S6) = (z8, z, z12, z2, 1, z9).

The BMA works as follows:

e k j ∆j C(j+1)(x) 2e > j B(j+1)(x)
0 0 0 z8 1 no z7

1 1 1 z 1 + z8x yes z7

1 2 2 z8 1 + z8x+ x2 no z7 + x
2 1 3 0 1 + z8x+ x2 yes z7 + x
2 2 4 z14 1 + z8x+ z13x2 + z14x3 no z + z9x+ zx2

3 1 5 0 1 + z8x+ z13x2 + z14x3 yes z + z9x+ zx2

3 2 6 stop

The comparison with Example 8.14(1) reveals that the result C(x) = C(6)(x) =
1 + z8x+ z13x2 + z14x3 is correct. �

8.8 Modifications to RS und BCH Codes 345

8.8 Modifications to RS und BCH Codes

8.8.1 Overview

We will now apply the code modifications of Section 5.5 to RS and BCH codes.
The methods of
• expanding (add parity-check symbols, keep k)
• puncturing (remove parity-check symbols, keep k)
• lengthening (add information symbols, keep n− k)
• shortening (remove information symbols, keep n− k)
applied to an (n, k, dmin)q code C create an (n′, k′, d′min)q code C′ with a different
block length but the same symbol size q. Starting with the primitive block
length n = pm − 1 we can construct almost all other block lengths n′, which is
extremely important for many applications. However, the modification of cyclic
codes often results in non-cyclic codes. Other methods such as transitions to
• subcodes (C′ ⊂ C, also called expurgating)
• extension codes (C ⊂ C′, also called augmenting)
are often also considered to be code modifications where the block length remains
the same. These relatively simple modifications are represented by divisibility
relationships between the generator polynomials (or parity-check polynomials)
and will not be re-discussed here (see Problems 6.6 and 8.10).

A further possibility for non-primitive block lengths is provided by gener-
alized BCH codes with block lengths of the form n = m(2mr − 1), mentioned
at the end of Subsection 8.2.1. However, they require a more time-consuming
mathematical discussion and will also not be covered here.

8.8.2 Expansion

Expansion adds additional parity-check bits to the codeword, the objective being
an increased minimum distance, of course:

n′ > n, k′ = k, n′ − k′ > n− k, d′min ≥ dmin, R′ < R. (8.8.1)

The following method for expanding RS codes generalizes the principle of The-
orem 5.11, however, without presuming an odd minimum distance:

Theorem 8.12. A (q − 1, k, d)q RS code C with q = pm can be easily expanded
to a (q, k, d + 1)q MDS code C′ as follows. From a = (a0, . . . , aq−2) ∈ C, a ′ =
(a0, . . . , aq−2, aq−1) ∈ C′ is created, where the additional parity-check symbol of
a(x) is calculated at x = zl−1:

aq−1 = −a(zl−1) = −Al−1 (8.8.2)

For narrow-sense RS codes with l = 1, aq−1 = −
q−2∑
i=0

ai or equivalently

q−1∑
i=0

a′i = 0.

346 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

Proof. The linearity of C′ is apparent. The RS code C is generated by g(x) =
(x− zl) · · · (x− zl+d−2). Let a ∈ C with wH(a) = d. If aq−1 �= 0, then wH(a

′) =
wH(a) + 1 = d + 1. However, if aq−1 = −a(zl−1) = 0, then x − zl−1 has to be
a factor of a(x), but not contained in g(x). Thus, there exists a representation
a(x) = u(x)(x− zl−1)g(x) with suitable u(x) and therefore a(x) ∈ C′′, where C′′
is created by the generator polynomial g(x) = (z − zl−1)(x− zl) · · · (x− zl+d−2)
and the designed distance is d′′ = d′′min = d+ 1. Thus wH(a

′) = wH(a) ≥ d+ 1.
Therefore d′min ≥ d+ 1 is proved.

The result above and d′min ≤ n′ − k′ + 1 = n − k + 2 = d + 1 lead to
d′min = d+ 1 = n′ − k′ + 1, hence, C′ is an MDS code. �

The parity-check matrix of the expanded RS code is created by adding an
extra row of ones and a column of zeros to the parity-check matrix of (8.1.7) as
done in (5.5.7).

A further (double) expansion gives us a (q + 1, k, d+ 2)q MDS code, which
is less important for practice, by using [17, 144]

aq = −a(zl+d−1). (8.8.3)

Furthermore, there are some more q-ary triple expanded MDS codes with n =
q + 2.

The decoding of expanded codes and an accordingly modified Berlekamp-
Massey algorithm (BMA) are described in [17, 64, 95]. Of course, BCH codes
can also be expanded: starting from a (2m − 1, k, 2t + 1)2 code the method of
Theorem 5.11 creates a (2m, k, 2t+2)2 code. Expanded BCH codes are discussed
extensively in [17].

8.8.3 Puncturing

For puncturing, parity-check symbols are deleted from the codeword:

n′ < n, k′ = k, n′ − k′ < n− k, d′min ≤ dmin, R′ > R. (8.8.4)

In contrast to the expansion, where the MDS property is only preserved for
simple or double expansion, it is always preserved for puncturing:

Theorem 8.13. A punctured MDS code remains an MDS code.

Proof. After deleting r parity-check symbols, the minimum distance is de-
creased by r at the most and the Singleton bound leads to

n′ − k + 1 = n− r − k + 1 = dmin − r ≤ d′min ≤ n′ − k′ + 1 = n′ − k + 1.

The statement of the theorem is directly implied by Theorem 4.8. �
In particular, punctured RS codes are still MDS codes where any arbitrary

selection of components can be punctured. So, together with expansion there
are (n, k, d)q MDS codes for all block lengths in the range of k ≤ n ≤ q + 1.

8.9 Problems 347

The decoding of punctured RS codes can be implemented by an error- or
erasure-locator decoder without restrictions or losses: expand the received word
to a word of primitive block length by interpreting the r punctured positions as
erasures. According to Theorem 8.11, the maximum number of τ = (d′min−1)/2
errors can be corrected for τv = r erasures, since 2τ+τv = d′min+r−1 = dmin−1.

8.8.4 Shortening

Shortening codes means deleting information bits, for instance, information sym-
bols are set to zero for encoding and are not transmitted:

n′ < n, k′ < k, n′ − k′ = n− k, d′min ≥ dmin, R′ < R. (8.8.5)

The information polynomials are restricted to deg u(x) ≤ k′−1 such that a(x) =
u(x)g(x) has a degree ≤ (k′− 1)+ (n′− k′) = n′− 1. For shortened BCH codes,
the minimum distance increases in a unforseeable way, but for MDS codes the
minimum distance remains constant and a statement similar to that of Theorem
8.13 can be made:

Theorem 8.14. A shortened MDS code remains an MDS code.

Proof. The relation d′min ≥ dmin is apparent and the Singleton bound implies
that n− k + 1 = dmin ≤ d′min ≤ n′ − k′ + 1 = n− k + 1. �
So, since shortened RS codes are still MDS codes, their weight distribution can
be exactly calculated according to Theorem 8.3.

8.9 Problems

8.1. Name the parameters of a 2-error-correcting RS code with q = 2m. How
many errors can be corrected for binary interpretation?

8.2. For RS codes with q = 2m and R = k/n ≈ 1/2, prove that dmin/n ≈ 1/2
for the distance rate.

8.3. For a 1-error-correcting RS code in the form of (8.1.3) with q = 5, de-
termine the generator polynomial g(x) and the parity-check polynomial
h(x), where z = 3 is a primitive element. Give a formula to directly
calculate the frequency components of a codeword from the time com-
ponents of the information word.

8.4. For the (7, 3, 5)8 RS code in the form of (8.1.3) determine the generator
polynomial g(x) and the parity-check polynomial h(x) as well as both
forms of the parity-check matrix according to (6.3.3) and (8.1.7).

348 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

8.5. Consider a binary BCH code where the parity-check frequencies start at
z0. Prove that the designed distance d is even.

8.6. For the 1-error-correcting BCH codes over F16, prove that the degree of
the generator polynomial

g(x) = LCM
(
f[zl](x), f[zl+1](x)

)
is at its minimum for l = 1. Interpret your result.

8.7. Derive the parameters of the (63, k, d)2 BCH codes of Table 8.2 without
explicitly calculating the generator polynomial. Use Example 7.6.

8.8. Construct a ternary BCH code in the form of (8.2.2) to correct 2 errors
of length n = 26. Use p(x) = x3 + 2x+ 1 as a primitive polynomial for
F27 and write the generator polynomial as a formula without an explicit
calculation.

8.9. For the (7, 5, 3)8 RS code with l = 1, determine the generator polyno-
mial in the time and in the frequency domain. Which weight does the
generator polynomial have for binary interpretation?

Consider the (7, k, d)2 BCH code which is supposed to be a maximum
subcode of the (7, 5, 3)8 RS code. Determine k and dmin as well as the
generator polynomial. Find a u(x) ∈ F8[x] with gBCH(x) = u(x)gRS(x).
Is the BCH code still a subcode of the RS code for binary interpretation?

8.10. Consider the (6, 2, 5)7 RS code with l = 0 over the prime field F7,
where z = 3 is a primitive element. Create the transformation matrices
according to (7.5.5) and (7.5.6). Determine g(x) and h(x). Decode the
received words

y1 = (4, 6, 0, 1, 4, 3)

y2 = (4, 6, 0, 1, 4, 0)

y3 = (3, 1, 6, 1, 2, 0)

y4 = (2, 1, 6, 1, 3, 2)

y5 = (5, 0, 5, 0, 5, 0)

y6 = (2, 1, 3, 5, 5, 6)

y7 = (4, 0, 0, 1, 0, 6)

in the time as well as in the frequency domain. Solve the key equa-
tion with the Peterson method as well as with the Berlekamp-Massey
algorithm. In all 7 cases, decoding is basically different. Interpret the
occuring error scenarios.

8.9 Problems 349

8.11. As in Problem 8.10, consider the (6, 2, 5)7 RS code with l = 0, however,
this time with error-and-erasure correction. Decode the received words

y8 = (?, ?, ?, 1, 4, ?) with Iv = {0, 1, 2, 5}
y9 = (?, 6, 0, 1, 4, ?) with Iv = {0, 5}

in the time as well as in the frequency domain.

8.12. For the general case with RS and BCH codes, prove the following rep-
resentation of the error-evaluator polynomial:

T (x) = −
∑
i∈I

ei

∏
j∈I\{i}

(1− xzj)

 . (8.9.1)

In textbooks, we often find the polynomial

W (x) = −
∑
i∈I

eixz

i
∏

j∈I\{i}
(1− xzj)

 . (8.9.2)

Prove the relation

W (x) = T (x) + E0C(x) mit E0 = e(z0). (8.9.3)

Prove that the Forney algorithm is also valid for W (x) instead of T (x).
For the special case of binary BCH codes, prove the relation

T (x) = xC ′(x)− E0C(x) , W (x) = xC ′(x) (8.9.4)

and interpret this result.

8.13. Verify the equations of Problem 8.12 for the (15, 5, 7)2 BCH code, dis-
cussed in Example 8.14 (however, now with l = 0), with the set of
unknown error locations I = {0, 4, 10} as well as for the (6, 2, 5)7 RS
code with l = 0 and z = 3 with the error pattern e(x) = 3x+ x4.

350 8. Reed-Solomon and Bose-Chaudhuri-Hocquenghem Codes

