
Chapter 4

Linear Block Codes

For the construction of codes as well as for simple encoding and decoding schemes
an algebraic structure is required for the set of codewords. The main criterion
a linear code needs to fulfill is that the sum of two codewords is another code-
word, whereas cyclic codes require additional algebraic structures which will be
discussed in Chapter 5.

The required algebraic basics for linear codes are fairly easy. The numbers of
correctable and detectable errors are determined by the minimum distance. In
this chapter we will derive the basic relations between the minimum distance and
the code parameters. Some of these results will also be partially valid for non-
linear codes. Finally, we will introduce the weight distribution for calculating
the error probabilities for error-detection and error-correction coding.

4.1 Structure of Linear Block Codes

According to Definition 1.4, the information symbols ui and the encoded symbols
ai in an (n, k, dmin)q block code are q-ary with ui, ai ∈ Fq, where the input
alphabetAin has been replaced by the Galois field Fq. Therefore we will introduce
Galois fields and vector spaces before defining linear codes.

4.1.1 Galois Fields and Vector Spaces

The Galois field Fq is a q-ary set on which the two binary operations + (addition)
and − (multiplication) are defined. The corresponding inverse operations are
subtraction and division, respectively. The rules satisfied by these arithmetic
operations are similar to those for the set of real or rational numbers.

The advantage of Galois fields is that the finiteness of the set or alphabet
corresponds to the finiteness of the technical systems. Also, there are no round-
ing or quantization errors as is the case with real numbers, but only exact results
within the finite set. A disadvantage is the lack of an order relation, i.e., there is

138 4. Linear Block Codes

no “smaller than” or “greater than” relation between the elements of the Galois
field.

A mathematical introduction to Galois fields can be found in the appendix
Sections A.4 to A.8. Little knowledge of Galois fields is required for the simple
linear and cyclic codes in Chapters 3 to 5. Thus, in the following, only the
definition of Galois fields and a few examples are given.

Definition 4.1. A Galois field (finite field) Fq is a q-ary set with two binary
arithmetic operations, usually denoted + (addition) and · (multiplication). The
set Fq is closed, i.e., x+y ∈ Fq and x·y ∈ Fq for all x, y ∈ Fq. The two operations
must satisfy the following “usual” rules.

1. Additive commutative law: x+ y = y + x for all x, y ∈ Fq.

2. Additive associative law: (x+ y) + z = x+ (y + z) for all x, y, z ∈ Fq.

3. Additive identity: there exists an element 0 ∈ Fq such that x + 0 = x for
all x ∈ Fq.

4. Additive inverse Element: for all x ∈ Fq there exists a unique element
−x ∈ Fq such that x+ (−x) = 0.

5. Multiplicative commutative law: x · y = y · x for all x, y ∈ Fq.

6. Multiplicative associative law: (x · y) · z = x · (y · z) for all x, y, z ∈ Fq.

7. Multiplicative identity: there exists an element 1 ∈ Fq such that x · 1 = x
for all x ∈ Fq.

8. Multiplicative inverse element: for all x ∈ Fq \{0} there exists a unique
element x−1 with x · x−1 = 1.

9. Distributive law: x · (y + z) = x · y + x · z for all x, y, z ∈ Fq.

The two identity elements 0 and 1 are also called neutral elements. With the
properties (1) to (4) Fq is also called an additive group and with the properties
(5) to (8) Fq \{0} is called a multiplicative group. We will use the following
denotations:

x+ (−y) = x− y , x · y = xy , x · y−1 =
x

y
.

Finally, · is to bind stronger than +. Subsequently, the operations in a Galois
field are not distinguished from those in the field of real numbers, since the
difference can usually be recognized from the context.

4.1 Structure of Linear Block Codes 139

Generally, x ·0 = 0. There exist no zero divisors, i.e., xy = 0 is only possible
if x = 0 or y = 0.

Galois fields Fq only exist for q = pm, where p is prime and m is a positive
integer. Thus q can only take on the values 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17,...
Only one unique Galois field exists for each q, because two Galois fields with the
same cardinality are isomorph, i.e., by renaming the elements one Galois field
emerges from the other (in other words they are similar in structure).

The most important cases are q = 2 (simple binary codes) and q = 2m

(e.g., RS codes, see Chapter 7). Since q = 2 for simple codes, there is no
need to understand Fpm completely and introduce construction methods at this
moment. As the statements in the following chapters are also valid for the more
complicated codes over Fpm , all definitions and theorems are given for the general
case. For now, we will accept that

1 + 1 = 0 in F2 and F2m for all m. (4.1.1)

Example 4.1. For the simple case of q = p prime, which is only interesting for
Chapters 4 to 6, Fp consists of the non-negative integers 0, 1, 2, . . . , p− 1, where
the addition and multiplication are performed by modular arithmetic. Addition
modulo p is usually denoted

x+ y = z mod p, (4.1.2)

where z is obtained by adding up x and y using the standard integer addition
in Z and dividing the result by p; z is the remainder of the division. The same
applies to the multiplication.

If p is small, the arithmetic operations in Fp can be described in practice by
tables.

(1) F2 is the most important case:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

For example 1 + 1 = 0, −1 = 1, −0 = 0, 1−1 = 1.
(2) Consider F5:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

For example −1 = 4, −2 = 3, 2−1 = 3, 3−1 = 2, 4−1 = 4.
(3) F4 is a Galois field, but it can not be defined by the modulo 4 operation:

140 4. Linear Block Codes

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

There exists no x ∈ F4 such that 2 · x = 1, i.e., 2−1 does not exist. �

Definition 4.2. The set of all n-tuples (also called blocks, vectors or words of
length n) with components in Fq is denoted

Fn
q = Fn

pm = {(x0, . . . , xn−1) | x0, . . . , xn−1 ∈ Fq}.

Its cardinality is |Fn
q | = qn. An addition and a scalar multiplication are defined

component-by-component, i.e., for x, y ∈ Fn
q and α ∈ Fq

x + y = (x0, . . . , xn−1) + (y0, . . . , yn−1) = (x0 + y0, . . . , xn−1 + yn−1)
α · x = α · (x0, . . . , xn−1) = (αx0, . . . , αxn−1).

Hence, x + y ∈ Fn
q and α · x ∈ Fn

q for all x , y ∈ Fn
q and all α ∈ Fq.

The “usual” laws, which are listed in detail in Section A.5, are valid for these
operations. Therefore Fn

q is a vector space or linear space. The same symbols
are used for the operations in a vector space as well as in a Galois field and in
the real field. A multiplication is not defined between two words.

Now, the equations (1.5.7) and (1.5.10) in Theorem 1.1 are intelligible. Fur-
thermore, the Hamming distance is invariant to shifts:

dH(x , y) = dH(x + z , y + z). (4.1.3)

Theorem 4.1. In Fn
2 and Fn

2m arbitrary words x and y satisfy the following
relations.
(1) If wH(y) is even, then

wH(x) even ⇐⇒ wH(x + y) even. (4.1.4)

(2) If wH(y) is odd, then

wH(x) even ⇐⇒ wH(x + y) odd. (4.1.5)

For an (n, k)q block code, u = (u0, . . . , uk−1) ∈ Fk
q is valid for the information

word and a = (a0, . . . , an−1) ∈ Fn
q for the codeword and furthermore C ⊆ Fn

q

and |C| = qk for the code itself.

4.1 Structure of Linear Block Codes 141

4.1.2 Definition and Simple Properties of Linear Codes

After the preparations in the previous subsection, we will now turn to the defi-
nition of linear codes:

Definition 4.3. An (n, k)q code C over Fq is called a linear code, if the sum of
two codewords is another codeword:

a , b ∈ C =⇒ a + b ∈ C.
In addition, non-binary codes with q > 2 must satisfy

a ∈ C, α ∈ Fq =⇒ α · a ∈ C.
In other words, C is to be a vector space.

Consider some simple examples (q = 2):
C = {000, 100, 010, 001} is non-linear,
C = {000, 110, 011, 111} is non-linear,
C = {000, 110, 101, 011} is linear.

In practice, the restriction on linear codes does not imply a great loss –
at least not with hard-decision decoding [139, 207]. Only few cases are known
where the best linear code is worse than the best non-linear code. Therefore
J.L.Massey [207] looks upon the investigation of non-linear codes as “a waste
of time”. Nearly all codes used in practice are linear, so from now on we shall
mostly consider linear codes. In contrast to this, Shannon information theory,
as discussed in Chapter 3, is mainly based on non-linear random codes (see
also Subsection 4.4.3 for further considerations). Some of the following proposi-
tions are valid for non-linear codes as well, though this will not be pointed out
especially.

Example 4.2. (1) The (n, 1)2 code

C = {00 . . . 0, 11 . . . 1} (4.1.6)

is called a repetition code. The linearity is apparent. The code rate is R = 1/n
and the minimum distance is dmin = n. Systematic encoding can use u0 �→ a =
(u0, . . . , u0).

(2) The (n, n− 1)2 code

C =

{
(a0, . . . , an−1)

∣∣∣∣∣
n−1∑
i=0

ai = 0

}
(4.1.7)

is called a parity-check code (or single parity-check code, SPCC). This code
is linear with R = (n − 1)/n = 1 − 1/n. Since 000 . . . 0 and 110 . . . 0 are
codewords, dmin = 2. When systematically encoding with (u0, . . . , un−2) �→ a =
(u0, . . . , un−2, u0 + · · ·+ un−2), the sum of the information bits is attached as a
parity-check bit. �

142 4. Linear Block Codes

Theorem 4.2. A linear code C is invariant under additive shifts, i.e., C+ b =
{a + b |a ∈ C} = C for all b ∈ C.

Due to dH(a , b) = wH(a − b) the minimum distance of a code is equal to
the minimum weight of the codewords, thus for determining dmin, only qk − 1
words need to be considered instead of qk(qk − 1) pairs. This implies:

Theorem 4.3. For a linear (n, k, dmin)q code C the minimum Hamming distance
is equal to the minimum Hamming weight:

dmin = min{dH(a , b) | a , b ∈ C,a �= b}
= min{wH(a) | a ∈ C,a �= 0}. (4.1.8)

4.2 Error Detection and Correction and Their

Geometric Representations

A transmission using hard-decision demodulation, i.e., Ain = Aout = Fq, can
be modelled as a superposition of the codeword and an error word (or error
pattern):

y = a + e. (4.2.1)

Thus the received word y is composed of the sum of the transmitted word a
and the error word e = y − a ∈ Fn

q . According to the linear structure, y being
a codeword is equivalent to e being a codeword. Analogue to Section 1.6, there
are the following possibilities:

e = 0 Errorfree correct transmission.

e ∈ C\{0} Falsification into a different codeword which can never be detected
or corrected.

e �∈ C The error pattern is generally detectable and could perhaps be cor-
rected by the decoder.

Definition 4.4. An (n, k)q block code C
(1) corrects t errors (also called t-error-correcting code), if the maximum-
likelihood decoding returns the correct codeword for each error pattern e with
wH(e) ≤ t;

(2) detects t′ errors (also called t′-error-detecting code), if for each error pattern
e �= 0 with wH(e) ≤ t′ the received word y = a + e is not a codeword.

These definitions indicate that up to t errors are corrected and up to t′ errors
are detected. It is crucial that every possible error pattern of weight ≤ t is cor-
rectable and that every possible error pattern of weight ≤ t′ is detectable. Since

4.2 Error Detection and Correction and Their Geometric Representations 143

the definitions refer to the errors being in arbitrary positions within the received
word, the terms random-error-correcting code and random-error-detecting are
also widely used. This also emphasizes the difference to the so-called burst-
error-correcting codes and burst-error-detecting codes which will be discussed
in Section 6.7.

4.2.1 Error Detection

Theorem 4.4. An (n, k, dmin)q code detects t′ = dmin − 1 errors.

Proof. According to Theorem 3.3, e ∈ C\{0} inevitably implies that wH(e) ≥
dmin. In reverse: an error pattern e with wH(e) ≤ dmin−1 implies that e �∈ C\{0}
and thus e is detected. �

In the proof of Theorem 2.1 in Section 3.7 we had already introduced the
concept of spheres:

Definition 4.5. A sphere Kr(x) of radius r centered around the word x ∈ Fn
q

is defined as the set of all words with a Hamming distance ≤ r from x :

Kr(x) = {y ∈ Fn
q | dH(x , y) ≤ r}. (4.2.2)

K0(x) = {x} and Kn(x) = Fn
q are apparent. Mostly, only spheres around

the codewords are considered, but within the radius all words in Fn
q are in the

spheres. According to combinatorics, there are an exact
(
n
i

)
(q−1)i words y ∈ Fn

q

with dH(x , y) = i, leading to the following important result for the cardinalities
of the spheres: ∣∣∣Kr(x)

∣∣∣ = r∑
i=0

(
n

i

)
(q − 1)i. (4.2.3)

Example 4.3. Let us consider the (3, 1)2 repetition code C = {000, 111} with
dmin = 3. The spheres around the codewords are as follows.

K1(000) = {000, 100, 010, 001}
K1(111) = {111, 110, 101, 011}
K2(000) = {000, 100, 010, 001, 110, 101, 011}
K2(111) = {111, 110, 101, 011, 001, 010, 100}
K3(000) = K3(111) = F3

2

The sphere K2(100) around a non-codeword contains both codewords. �

Figure 3.1 shows that every sphere of radius dmin − 1 around a codeword can
not contain another codeword. If two codewords a and b with b ∈ Kdmin−1(a)
existed, then dH(a , b) ≤ dmin − 1, yet dmin is the minimum distance between
two codewords.

If there is a maximum of dmin − 1 errors, the received word lies within
the sphere around the actual transmitted codeword. Since there is no other

144 4. Linear Block Codes

dmin

dmin–1

Figure 4.1. Spheres of radius dmin − 1 around the codewords

codeword in this sphere, the received word can not be mistaken for a codeword
– apart from the errorfree transmission, of course. However, several codewords
can be in a sphere of radius dmin − 1 around an arbitrary word.

According to Theorem 3.4, all

dmin−1∑
i=0

(
n

i

)
(q − 1)i error patterns of a weight

≤ dmin−1 are detected. Error patterns of a higher weight can not all be detected,
but the majority will be since every e �∈ C is detected and their number is qn−qk.
The rate of detectable error patterns of higher weight will be more precisely
determined for the cyclic codes in Section 5.7.

4.2.2 Error Correction

The following theorem, despite its easy proof, is one of the most important
results delivered by the coding theory:

Theorem 4.5. An (n, k, dmin)q code corrects t errors, if 2t + 1 ≤ dmin. This
inequality is equivalent to

t = �(dmin − 1)/2�
where �λ� denotes the largest integer ≤ λ.

Proof. Let y = a + e with wH(e) ≤ t, then dH(y ,a) ≤ t. Let b ∈ C be
arbitrary with b �= a . The triangle inequality implies that

2t+ 1 ≤ dmin ≤ dH(a , b) ≤ dH(a , y) + dH(y , b) ≤ t+ dH(y , b).

4.2 Error Detection and Correction and Their Geometric Representations 145

2t + 1

t

Figure 4.2. Decoding spheres of radius t = �(dmin − 1)/2� around the codewords

Thus dH(y , b) ≥ t + 1. Therefore the distance of a from y is t at the most,
whereas every other codeword has a distance of at least t+1 from y . Therefore
the ML decoder picks the correct codeword. �

Figure 3.2 shows the disjoint spheres of radius t around the codewords. If
during the transmission the codeword a is overlayed by t errors at the most, the
received word y lies in Kt(a) and has a distance of at least t+1 from every other
codeword. Therefore the codeword with the smallest distance from y is uniquely
determined. Thus the spheres of radius t around the codewords are also called
decoding spheres. Received words with more than t errors are either in a wrong
sphere and then decoded incorrectly or they are between the decoding spheres
and are either decoded correctly or incorrectly.

Let us now consider spheres of radius t around arbitrary words, again there
is only one codeword at the most within these spheres, otherwise because of
a , b ∈ Kt(x) there would be a contradiction:

2t+ 1 ≤ dmin ≤ dH(a , b) ≤ dH(a , x) + dH(x , b) ≤ t+ t = 2t.

Example 4.4. (1) Using the (3, 1, 3)2 code C = {000, 111} with t = 1 the
received words 000, 100, 010, 001 are decoded into 000 and 111, 011, 101, 110 are
decoded into 111.

(2) Using the (2, 1, 2)2 code C = {00, 11} with t = 0, the erroneous received
words 01 and 10 are detected as corrupted, but can not be decoded correctly.
In this case the ML decoder should decide randomly.

(3) Consider the slightly strange (6, 2, 3)2 code with t = 1 given by

C = {00 0000︸ ︷︷ ︸
3

, 10 1100︸ ︷︷ ︸
4

, 01 0111︸ ︷︷ ︸
3

, 11 1011︸ ︷︷ ︸
2

}.

146 4. Linear Block Codes

The first two bits are the information bits. Since t = 1 only one error can be
corrected reliably. If y = 00 1011 is received, the distance from the codewords
are those given below the braces, therefore the ML-decoder decides on 11 1011,
i.e., both information bits are corrected. �

4.2.3 Combination of Error Correction and Error
Detection

Error detection and error correction can also be performed simultaneously.

Theorem 4.6. An (n, k, dmin)q code can correct t errors and detect t
′ errors

(with t′ ≥ t) simultaneously, if

t+ t′ + 1 ≤ dmin. (4.2.4)

For t = 0 this corresponds to Theorem 3.4 and for t = t′ to Theorem 3.5.

In practice, a codeword is sought with a distance ≤ t from the received word.
If such a codeword is found, it is the decoding result. If such a codeword is not
found, all error patterns of a weight ≤ dmin − t− 1 are detectable. This is also
shown in Figure 4.3, where the hatched decoding spheres of radius t and the
larger error-detection spheres of radius t′ do not intersect if t+ t′+1 ≤ dmin. All
received words within the t′-spheres but outside of the t-spheres are detected as
erroneously.

Proof. Form the set V =
⋃
b∈C

Kt(b) of correctable words with a maximum of t

errors. Let y = a + e be a received word with wH(e) = f and t < f ≤ t′.
Assume y ∈ V, then there would exist a b ∈ C with y ∈ Kt(b). Since y has
a bigger distance from a than t, b �= a , thus we conclude from the triangle
inequality that

t+ t′ + 1 ≤ dmin ≤ dH(a , b) ≤ dH(a , y)︸ ︷︷ ︸
= f

+ dH(y , b)︸ ︷︷ ︸
≤ t

≤ t′ + t.

This is a contradiction, therefore y �∈ V. So the received word is not in the set
of correctable error patterns and thus is detected as erroneous. �

Example 4.5. Consider the code C = {000, 111} with dmin = 3 once more. If
t = 1 and t′ = 1, 100 is decoded into 000. However, if t = 0 and t′ = 2, 100 is
detected as erroneous (emerging from 000 or 111). The combination t = 1, t′ = 2
is impossible, because on the one hand 100 would be decoded into 000, on the
other hand it would be detected as erroneous (emerging from 111). �

4.2 Error Detection and Correction and Their Geometric Representations 147

����
��

�

Figure 4.3. Decoding spheres of radius t and error-detection spheres of radius t′

around the codewords

4.2.4 Decoding Rules for Hard-Decision Channels

Now, we will generalize the situation in Example 3.4(3). Let there be an
(n, k, dmin)q code with 2t + 1 ≤ dmin. The received word y = a + e is to have
f = dH(a , y) errors. Using the ML estimation â , fML = dH(y , â) corrections
are made in the received word. Two possible results have to be distinguished:

(a) If f ≤ t, the ML estimation is correct with â = a and fML = f .

(b) If f > t, the ML estimation might be wrong with â �= a , and fML can
become uncontrollably big (up to fML = n). The triangle inequality leads
to dH(a , â) ≤ f + fML, therefore the ML estimation may deviate in uncon-
trollably many positions from the transmitted codeword, although the code
can only correct t errors.

For “safety reasons”, the correction during the decoding could be restricted
to a maximum of dH(y ,a) ≤ t positions, which is actually used for the
so-called BMD method:

Definition 4.6. The bounded-minimum-distance decoder (BMD) is only de-
fined for received words which lie in any decoding sphere. Let y be a received
word. If a codeword a exists with dH(a , y) ≤ t, then a is the decoder output, of
course, since a has minimum distance from y . If there is no codeword a with
dH(a , y) ≤ t, a decoder failure is declared.

148 4. Linear Block Codes

a

a

MLD

BDD

BMD

a

Figure 4.4. Comparison of Decoding Rules

Figure 3.3 shows a comparison of the three decoding methods MLD, BDD
and BMD (assuming hard decisions). The bullets denote the codewords and
a is the transmitted codeword. The hatched area surrounding a represents
the decision region consisting of the received words which are decoded into a .
The decision regions can be denoted δ−1(a) with the codeword estimator δ as
given in (1.6.2). Generally, the decision regions do not intersect, but only for

4.3 Bounds on Minimum Distance 149

MLD the whole space Fn
q of received words is completely covered by the decision

regions. In contrast, for BDD and BMD the decision regions do not cover Fn
q

completely, thus the decoder output is not defined for the received words which
are not contained in any decision region (in other words the decoder might act
uncontrollably which is always considered a decoder failure).

MLD (Maximum-Likelihood Decoder, see Theorem 1.3): For each received
codeword the nearest codeword is chosen. In the 2-dimensional case, the
decision region is bounded by the mid-perpendiculars of the triangles
created by the codewords as end-points. In the n-dimensional case, it is
bounded by the corresponding hyperplanes.

The MLD minimizes the word-error probability (under the assumption
of equal a priori probabilities).

BDD (Bounded-Distance Decoder, see also the proof of the channel coding
theorem in Section 2.7): Around each codeword a sphere of the same
radius t according to (2.7.4) is created. Only received words which are
in exactly one sphere are decoded into the center of the sphere. There is
no decoding for words which are in no sphere or in more than one sphere.
Thus, the decision regions are of a fairly complicated geometrical form.

Since the BDD is used for the proof of the channel coding theorem, it is
hardly worse than the MLD.

BMD (Bounded-Minimum-Distance Decoder, see Definition 3.6): Around each
codeword a sphere of the same radius t = �(dmin−1)/2� is created as the
decision region. Thus, the spheres are definitely disjoint. Only received
words which are in exactly one sphere are decoded into the center of the
sphere. There is no decoding for words outside the spheres.

Thus, the BMD performs a “decoding up to half the minimum distance”.

The BMD is, of course, worse than the MLD method, but the important ad-
vantage lies in the simpler realization of decoders for important code families
like the RS and BCH codes (see Chapter 8 for more details). The comparison
between MLD and BMD will be continued in Subsection 4.4.2.

More details of error-correction and error-detection with BMD decoders for
the specific class of MDS codes (to be introduced in the next subsection) are
covered in Subsection 8.1.4, where we will also consider the computation of
fML = dH(y , â) in detail.

4.3 Bounds on Minimum Distance

After reading the previous section, the meaning of dmin and t is evident. But
how do these values relate to the code parameters n, k and q?

150 4. Linear Block Codes

4.3.1 The Singleton Bound and Maximum Distance

Separable (MDS) Codes

Theorem 4.7 (Singleton bound). A linear (n, k, dmin)q code satisfies

dmin ≤ n− k + 1. (4.3.1)

A code which satisfies this bound with equality is called a maximum distance
separable (MDS) code.

Proof. All codewords differ in at least dmin positions. If the first dmin − 1
positions of all codewords are deleted, the shortened codewords of length n −
dmin+1 still differ. Thus there are qk different shortened codewords in the space
of the qn−dmin+1 shortened words. However, this is only possible if k ≤ n−dmin+1.

�

Therefore 2t ≤ n−k is required for any t-error-correcting code and t′ ≤ n−k
for any t′-error-detecting code. Hence, two parity-check bits are needed for the
correction, but only one for the detection of an error.

The only binary MDS codes are the trivial (n, 1, n)2 repetition codes. In
comparison, the q-ary MDS codes, including the RS codes (see Chapter 7), are
of great practical importance. Nevertheless, MDS codes do not represent the
absolute optimum, thus the development of block codes has not yet reached
its end. An MDS code could be improved by reducing the cardinality q of the
alphabet with identical parameters n, k and dmin. The channel coding theorem
can not be proven by using MDS codes.

A very important property of the MDS codes is stated as follows.

Theorem 4.8. In an (n, k, n − k + 1)q MDS code the complete codeword is
uniquely determined by an arbitrary combination of k codeword positions.

Proof by contradiction. Assume that there are two different codewords a and
b, which are identical in k positions. Thus they differ in at most n−k positions,
which means dH(a , b) ≤ n − k. However, n − k + 1 is the minimum distance
between the codewords, therefore the assumption is wrong. �

4.3.2 The Hamming Bound and Perfect Codes

Theorem 4.9 (Hamming Bound, Sphere-Packing Bound). A linear
(n, k, dmin)q code which can correct up to t errors satisfies

qn−k ≥
t∑

r=0

(
n

r

)
(q − 1)r or n− k ≥ logq

[
t∑

r=0

(
n

r

)
(q − 1)r

]
. (4.3.2)

4.3 Bounds on Minimum Distance 151

In the specific case of q = 2 this reduces to

2n−k ≥
t∑

r=0

(
n

r

)
= 1 + n+

(
n

2

)
+ · · ·+

(
n

t

)
. (4.3.3)

A code which satisfies the Hamming bound with equality for a suitable integer
t is called a perfect code. In this case the decoding rules MLD and BMD are
identical.

Proof. The decoding spheres with the codewords as centers are mutually ex-
clusive. Since there are qk codewords, according to (3.2.8), the total number of
words in all decoding spheres is exactly

qk ·
t∑

r=0

(
n

r

)
(q − 1)r.

This number must be smaller than or equal to the total number qn of all words.
Equality in the Hamming bound implies that the decoding spheres are so densely
packed that they cover the whole space Fn

q . �
Theorem 3.9 is one of the most important practical results of coding theory.

If a suitable code is chosen, the maximum error correction capability can be
determined for any given numbers n, k and q. However, the Hamming bound is
typically not very tight. If a bad code is chosen, t could be much smaller than
promised by the Hamming bound.

The Hamming bound does not tell us anything about the existence of codes.
If the Hamming bound is satisfied for a parameter combination n, k, t, q, the
existence of an appropriate code with dmin ≥ 2t+1 is not necessarily guaranteed.
Only the opposite case is given: if the parameter combination does not fit the
Hamming bound, then in principle an appropriate code can not exist. This is
also valid for the Singleton bound, the Elias bound (see Section 3.4.1) and the
Plotkin bound (see Section 3.3.3).

Example 4.6. (1) The (7, 4, 3)2 Hamming code in Example 1.2 with dmin = 3
and t = 1 is perfect, because 27−4 = 1 + 7. There does not exist a word outside
of the code C, such that the distance from all 16 codewords is ≥ 2.

(2) The existence of the so-called (23, 12, 7)2 Golay code with t = 3 (which
was already displayed in Figure 1.10) will not be proven here. The only easy
proof is to show that such a code is perfect:

223−12 = 2048 = 1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

)
.

(3) Consider a (127, 113, dmin)2 code (which will turn out to be a BCH code
in Chapter 7). We are looking for dmin under the assumption that the code has

152 4. Linear Block Codes

been constructed in the best possible way. The Hamming bound gives us

2127−113 = 16384 ≥

1 + 127 +

(
127

2

)
= 8129 for t = 2

1 + 127 +

(
127

2

)
+

(
127

3

)
= 341504 for t = 3

 .

It follows that t = 2 and therefore dmin = 5 or dmin = 6. Thus, with 113
information bits and 14 parity-check bits either 2 errors can be corrected or 4
(maybe even 5) errors can be detected.

(4) According to the Hamming bound, a (20, 10)2 code with t = 2 and a
(100, 50)2 code with t = 11 could exist where the code rate is 1/2. When repeated
five times, a (100, 50) code can emerge from the (20, 10) code by separately
encoding sections of 10 information bits as done with the (20, 10) code. But the
resulting code can correct neither 11 nor 10, but still only 2 errors, because 3
errors in a section of length 20 are not correctable.

Thus good codes with a big block length can not emerge from a code with
a short block length by using the simple repetition method. �

We emphasize that the term “perfect” code should not be taken too literally.
Perfect codes are far from being the best of all possible error control codes,
since the sphere-packing problem and the error-control problem are not entirely
equivalent. Many codes which are highly imperfect (e.g., MDS and RS codes
introduced in Chapter 8) provide more powerful error-control techniques than
the perfect codes. Only few classes of perfect codes exist at all (we skip the time-
consuming proof), namely the Hamming codes (see Section 4.4 for the general
definition), some Golay codes (not covered in detail here) and binary repetition
codes of odd block length:

Theorem 4.10. The (n, 1)2 repetition codes are perfect for an odd n.

Proof. Let n = dmin = 2t + 1 and y ∈ Fn
2 . For wH(y) ≤ t, dH(y ,0) =

wH(y) ≤ t and for wH(y) ≥ t + 1, dH(y ,1) = n − wH(y) ≤ t. Therefore
Kt(0) ∪Kt(1) = Fn

2 , thus the t-spheres around the codewords cover the whole
space. �

4.3.3 The Plotkin Bound

Theorem 4.11 (Plotkin Bound). A linear (n, k, dmin)q code satisfies

dmin ≤ n(q − 1)qk−1

qk − 1
≈ n(q − 1)

q
. (4.3.4)

The approximation is valid for a large k.

4.3 Bounds on Minimum Distance 153

Proof. Due to symmetry reasons, every code symbol takes on each of the q
possible values with the same probability. Thus (q − 1)/q is the average weight
of a code symbol and n(q− 1)/q is the average weight of a codeword. Omitting
the all-zero word, the average weight of a codeword increases to

n(q − 1)

q
· qk

qk − 1
.

This average weight is, of course, greater than the minimum weight. �

4.3.4 The Gilbert-Varshamov Bound

The preceding Singleton, Hamming and Plotkin bounds provide so-called up-
per bounds for the minimum distance of a code, but the existence of such a
code is not guaranteed. The upper bounds only prove that codes with cer-
tain combinations of parameters do not exist. This raises the question of what
ranges of parameters are possible. Numerous specific answers will be given by
the codes of the following chapters, however, a general answer is given by the
Gilbert-Varshamov bound. This is a so-called lower bound which does guarantee
the existence of a code, but similar to the channel coding theorem, the lower
bound only guarantees the existence but does not provide a useful method for
constructing codes which satisfy the Gilbert-Varshamov bound.

Theorem 4.12 (Gilbert-Varshamov Bound). There always exists a linear
(n, k, dmin)q code, if

dmin−2∑
r=0

(
n− 1

r

)
(q − 1)r < qn−k. (4.3.5)

Various other forms of this bound are listed for example in [23].

Proof. In anticipation of Theorem 4.4, which we are still to derive, we will show
that a parity-check matrix with n columns of length n − k can be constructed,
so that every selection of a set of dmin − 1 columns is linearly independent.

Select any non-zero (n− k)-tuple as the first column. Then select any non-
zero (n − k)-tuple except for multiples of the first as the second column. The
third column may be any (n− k)-tuple which is not a linear combination of the
first two columns. If n − 1 columns have been constructed, it is to be shown
that an n-th column can be constructed.

In order to ensure that each selection of dmin − 1 out of the n columns is
linearly independent, the n-th column is not to be a linear combination of any
of dmin − 2 or fewer columns of the first n− 1 columns.

The number of linear combinations of r out of n − 1 columns is(
n− 1

r

)
(q − 1)r, thus there are l =

dmin−2∑
r=1

(
n− 1

r

)
(q − 1)r linear combinations

154 4. Linear Block Codes

of ≤ dmin− 2 columns out of n− 1 columns. There are qn−k possibilities for the
n-th column, of which the l possibilities and the zero column are excluded, i.e.,
qn−k > l + 1. �

The proof of the Gilbert-Varshamov bound, like the proof of the channel
coding theorem or the R0 theorem, does not leave us with a useful construction
method for good codes, for if the selection of the columns was bad, the codes
are of a useless or chaotic structure.

� � � � � � � � � � � � � � ! � � � � � " � � � � � # � � � � � � $ � � � � % � � � � & � � � � � � � � � ' � � � � � � � � � � � � � !�
� � � � �
 � � � � � � � � � � �

� � � 	 �
 � � � �
� � � � � 	 � � � � � �
 � �

� � � � �
 � � � � � � � � � �
�
 � � � � 	 � � 	 � � � � � �
 �

� � � � � � �

 � � � � � � �
� � � � � 	 � ! � � � �
 � � � � �
 � �

� � � � � � " #
 � �

$ � ! � � � � � � � � � �

�(
Figure 4.5. Gilbert-Varshamov and Hamming bounds for (63, k, 5)2 codes

Example 4.7. Consider a (63, k, 5)2 code. The correction of 2 errors is required
and as few parity-check bits as possible are to be used. The Hamming bound
implies that

2∑
r=0

(
63

r

)
= 1 + 63 + 1953 = 2017 ≤ 2n−k.

Therefore a code with only 11 parity-check bits might exist, thus k ≤ 52. The
Gilbert-Varshamov bound implies that

3∑
r=0

(
62

r

)
= 1 + 62 + 1891 + 37820 = 39774 < 2n−k.

Thus the existence of a code with 16 parity-check bits is guaranteed, i.e., k ≥ 47.
There does actually exist a (63, 51, 5)2 BCH code (see Table 7.1) which is fairly
good so the search for a better code is hardly worth the effort. Both bounds
and the BCH code are illustrated in Figure 4.4. �

4.4 Asymptotic Bounds on Minimum Distance

4.4.1 Comparison of Bounds

Now, we will consider the limit of the minimum distance as n →∞, where the
code rate R remains constant, thus implying that k = Rn → ∞. For all upper
or lower bounds in the last section there are asymptotic forms for which the

4.4 Asymptotic Bounds on Minimum Distance 155

so-called distance rate dmin/n converges to a limit as n → ∞. The asymptotic
bounds provide a relation between these limits of the distance rate and the code
rate. In the following we will only consider binary codes.

Singleton bound: (3.3.1) implies that dmin/n ≤ (n − k + 1)/n ≈ 1 − R and
therefore

R ≤ 1− dmin

n
. (4.4.1)

Hamming bound: (3.3.2) implies that 1−R ≥ n−1 log2

t∑
r=0

(
n

r

)
. According

to Theorem A.1, the right side of this inequality converges to the binary
entropy function by using λ = t/n ≈ dmin/(2n):

R ≤ 1−H2

(
dmin

2n

)
. (4.4.2)

Plotkin bound: (3.3.4) merely implies that 1/2 ≥ dmin/n. The derivation of
the asymptotic form requires some additional considerations. Let B(n, d) =
2k be the maximum cardinality of a binary linear code with the block length
n and the minimum distance d. First we need a proposition. For d < n

B(n, d) ≤ 2 · B(n− 1, d). (4.4.3)

Proof of this proposition. Let C be an (n, k, d)2 code. The set C′ = {a ∈
C|an−1 = 0} of all codewords in C whose last symbol is 0 forms a subcode
of C with a minimum distance of d′ ≥ d. It is fairly simple to prove that
either C′ = C with k′ = k or C′ ⊂ C with k′ = k − 1 (see Problem 3.2). By
eliminating the last component in C′ an (n− 1, k′, d′)2 code C′′ is created. If
d′ > d, then C′′ can be degraded such that d′ = d applies. So, for each code
C we can create a code C′′ of reduced block length with |C| = 2k ≤ 2 · 2k′ =
2 · |C′′| ≤ 2B(n− 1, d), completing the proof of the proposition. �
Repeated application of (3.4.3) on an (n, k, d)2 code with n ≥ 2d − 1 leads
to:

2k ≤ B(n, d) ≤ 2 · B(n− 1, d) ≤ 4 ·B(n− 2, d)

≤ . . . ≤ 2n−(2d−1) ·B(2d− 1, d)︸ ︷︷ ︸
≤ 2d

≤ d · 2n−2d+2,

because 2k ≤ 2d for a (2d − 1, k, d)2 code according to Theorem 3.11. By
taking the logarithm, k ≤ log2 d + n − 2d + 2, thus as n → ∞ we finally
obtain the result

R ≤ 1− 2
dmin

n
. (4.4.4)

156 4. Linear Block Codes

Elias bound: This upper bound is tighter than any of the other upper bounds
mentioned above. We will only quote the result without a proof [17, 105]

R ≤ 1−H2

1−

√
1− 2

dmin

n
2

 . (4.4.5)

Gilbert-Varshamov bound: With (3.3.5) and by taking the logarithm of
Theorem A.1 we obtain

n− k = log2

dmin−2∑
r=0

(
n− 1

r

)
≈ nH2

(
dmin − 2

n− 1

)
≈ nH2

(
dmin

n

)
,

directly implying the asymptotic form of the lower bound

R ≥ 1−H2

(
dmin

n

)
. (4.4.6)

The various asymptotic bounds are displayed in Figure 3.4 for comparison
where the code rate R is displayed as a function of the distance rate dmin/n. All
codes are asymptotically below the upper bounds, thus in particular below the
Elias bound. There are also at least some good codes above the lower Gilbert-
Varshamov bound, i.e., inside the hatched area. All codes below the hatched
area are considered to be bad. Considering larger code rates the Hamming bound
turns out to be nearly equal to the Elias bound. The asymptotic Singleton bound
is fairly useless for q = 2, however, important codes attaining the Singleton
bound for q > 2 are RS codes to be introduced in Chapter 8. The asymptotic
properties of binary BCH codes are discussed in Subsection 8.2.4 and compared
to the asymptotic bounds in Figure 8.16.

4.4.2 Asymptotically Good Codes

According to the Gilbert-Varshamov bound, at least the existence of so-called
families of asymptotically good codes (ns, ks, ds) with

lim
s→∞

ks
ns

> 0 and lim
s→∞

ds
ns

> 0 (4.4.7)

is guaranteed. At first sight, this seems obvious and hardly meaningful, however,
all known code families (apart from concatenated systems) do not have this
property and are therefore asymptotically bad, which we will soon show. The
explanation for this amazing fact has already been given in the discussion of the
channel coding theorem in Section 2.2.

How is it possible that there are codes which attain the Singleton bound
(MDS codes) or the Hamming bound (perfect codes), although the lower Elias

4.4 Asymptotic Bounds on Minimum Distance 157

Distance rate d
min

/n

C
od

e
ra

te
 R

=
k/

n
Upper bounds:

Singleton

Plotkin

Hamming

Elias

Lower bound:
Gilbert−Varshamov

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6. Asymptotic Bounds

bound seems to exclude the existence of such codes? As we have already men-
tioned, the cause is that in all known code families either the code rate or the
distance rate converges to zero, which can be seen in the following examples.

MDS codes: The most important example for MDS codes are the RS codes
according to Definition 7.1 which, assuming a fixed code rate, are of the
form

(n, k, dmin)q = (q − 1, R(q − 1), (1− R)(q − 1) + 1)q.

We observe that dmin/n → 1 − R as n → ∞, however, this is linked with
q →∞. In the binary interpretation the minimum distance stays unchanged
(see Chapter 7), thus

(n, k, dmin)2 = ((q − 1) log2 q, R(q − 1) log2 q, (1− R)(q − 1) + 1)2

with dmin/n→ 0.

Perfect Codes: Asymptotically, the short Golay codes are of no interest. Ac-
cording to Theorem 4.10, Hamming codes are of the form

(n, k, dmin)2 = (2r − 1, 2r − r − 1, 3)2,

158 4. Linear Block Codes

therefore R → 1 and dmin/n → 0 as r → ∞. According to Theorem 3.10,
repetition codes have the form

(n, k, dmin)2 = (2n + 1, 1, 2n+ 1)2

with R→ 0 and dmin/n = 1 as n→∞.

The next considerations are associated with the proof of the noisy channel coding
theorem from Section 3.x. Presume a BSC with the bit error probability pe
and BMD decoding according to Definition 3.6, thus error correction is only
performed if there are less than dmin/2 errors. At least the majority of all
error patterns must be corrected to ensure that Pw → 0 for the word error
probability as n→∞ for the block length. The average number of errors within
an error pattern is npe, therefore npe < dmin/2 is required. This is equivalent to
pe < dmin/(2n), so

RHamming = 1−H2

(
dmin

2n

)
< 1−H2(pe) = C.

Since R ≤ RElias ≤ RHamming for the asymptotic bounds, clearly R ≈ C for
Pw → 0 is not achievable. Thus the channel capacity can not be approached by
using BMD decoding, thus BMD is significantly worse than the BDD and the
MLD methods.

Conclusively, asymptotically good codes should enable an error correction
over half the minimum distance with an efficient decoding scheme (as long as
ideal maximum-likelihood decoding is impractical). When searching for asymp-
totically good codes this code property is as important as the maximization of
the minimum distance.

A further simple consideration leads us to the fact that for most error pat-
terns asymptotically good codes even correct dmin instead of dmin/2 errors. On
the one hand, for R ≈ C = 1 − H2(pe) the average number npe of errors is
corrected. On the other hand, we observe that R = 1 − H2(dmin/n) according
to the next theorem. The comparison leads to pe = dmin/n or dmin = npe, thus
for most error patterns even dmin instead of dmin/2 errors are corrected.

4.4.3 Random Codes and the Gilbert-Varshamov Bound

Now, let us recollect the random coding argument as used for the proof of the
noisy channel coding theorem. It is only possible to prove that Pw → 0 as
n → ∞ for the mean value over all randomly chosen codes, but not for an
individual code. This averaging technique can also be applied to the distance
rate. The next theorem will state that for most codes the distance rate is close
to the Gilbert-Varshamov bound, thus nearly half the codes are better than this
bound. Only few codes greatly divert from the bound, i.e., only few codes have
a significantly better or worse distance rate [105, 213].

4.4 Asymptotic Bounds on Minimum Distance 159

Theorem 4.13. For randomly chosen binary codes the averaged distance rate
dmin/n asymptotically satisfies the Gilbert-Varshamov bound:

R = 1−H2

(
lim
n→∞

E(dmin)

n

)
. (4.4.8)

Proof. It is to be shown that the cumulative distribution function of the distance
rate converges to a unit step function as n→∞, where the position λ of the step
is defined by H2(λ) = 1 − R. To do this, the codewords are chosen randomly
and statistically independent which, of course, implies a non-linear code. For
0 < λ < 1/2 and a , b ∈ C,

P

(
dmin

n
≥ λ

)
= P
(
dH(a , b) ≥ λn for all b ∈ C\{a}

)
=
∏

b∈C\{a}
P (dH(a , b) ≥ λn)

=
∏

b∈C\{a}
P (a �∈ Kλn(b))

=
∏

b∈C\{a}

[
1− 2−n|Kλn(b)|

]
.

The last equality results from P (a ∈ M) = 2−n|M| as in (2.7.6). We use the

notation sn =
λn∑
i=0

(
n

i

)
= |Kλn(b)|, implying that

P

(
dmin

n
≥ λ

)
=
[
1− 2−nsn

]2k−1

.

By taking the logarithm,

lnP

(
dmin

n
≥ λ

)
= (2k − 1) · ln

(
1− sn

2n

)

= (2k − 1)
sn
2n
· ln
([

1− 1

2n/sn

]2n/sn
)

.

According to Theorem A.1,

2n

sn
≥ 2n

2nH2(λ)
= 2n(1−H2(λ)) → ∞,

2k − 1

2n
sn ≈ 2n(R−1+n−1 log2 sn) → 2n(R−1+H2(λ))

as n→∞. It follows that

lim
n→∞

lnP

(
dmin

n
≥ λ

)
= 2n(R−1+H2(λ) · ln(e−1)

=

{ −2−∞ for R < 1−H2(λ)
−2∞ for R > 1−H2(λ)

}
,

160 4. Linear Block Codes

therefore

lim
n→∞

P

(
dmin

n
≥ λ

)
=

{
1 for R < 1−H2(λ)
0 for R > 1−H2(λ)

}
. (4.4.9)

Hence, for nearly all codes, dmin/n ≥ λ for R < 1 − H2(λ) and dmin/n < λ for
R > 1−H2(λ). Therefore we can usually expect dmin/n = λ for R = 1−H2(λ).
A proof for linear codes can be found in [213]. �

This theorem emphasizes the power of random codes, although as discussed
in Section 2.2 there is no constructive method to achieve the Gilbert-Varshamov
bound, at least not in the binary case. Yet, there is actually a certain inversion
to Theorem 4.13 which we will give here refraining from all confusing mathe-
matical details [155, 161]: if a code is no longer really random, but contains
certain regular structures allowing a more compact description than a simple
enumeration of the codewords, then on average the Gilbert-Varshamov bound
can not be achieved.

4.5 The Weight Distribution

The minimum distance is the most important parameter of a block code, but for
calculating the error probability and for some other applications, more informa-
tion about the code properties as contained in the so-called weight distribution
is required.

4.5.1 Definitions

Definition 4.7. The weight distribution of a linear (n, k, dmin)q block code C is
a vector with the parameters A0, . . . , An where Ar denotes the number of code-
words of Hamming weight r. The polynomial in Z with the Ar as coefficients is
called the weight enumerator of the code C:

A(Z) =
n∑
r=0

ArZ
r =
∑
a∈C

ZwH(a). (4.5.1)

Another often used form of the weight enumerator is

W (X, Y) =
n∑

r=0

ArX
n−rY r =

∑
a∈C

Xn−wH(a)Y wH(a). (4.5.2)

The indeterminates X, Y and Z are only formal placeholders. Computations
with the weight enumerator always use integers – independent of the underlying
Galois field Fq for the information and code symbols. The equalities in (3.5.1)
and (3.5.2) are obvious. The two forms of weight enumerators are connected as
follows:

A(Z) = W (1, Z), W (X, Y) = XnA

(
Y

X

)
. (4.5.3)

4.5 The Weight Distribution 161

The following properties are obvious:

A0 = A(0) = 1, An ≤ (q − 1)n, (4.5.4)

Ar = 0 for 0 < r < dmin, (4.5.5)
n∑
r=0

Ar = A(1) = qk. (4.5.6)

For some codes the weight distribution is symmetric which can be equivalently
described by the weight enumerator:

Ar = An−r for all r ⇐⇒ A(Z) = Zn · A(Z−1) (4.5.7)

⇐⇒ W (X, Y) = W (Y,X).

The weight distribution can be calculated in a closed form for few codes only,
some of which are the Hamming and simplex codes (see Theorem 5.10 and
(5.4.5)) and the MDS codes (see Theorem 8.3). Equivalent codes have identical
weight distributions, since a permutation of codeword components does not
change the weights.

Example 4.8. (1) With simple enumeration of the (7, 4, 3)2 Hamming code
in Example 1.2, A0 = A7 = 1 and A3 = A4 = 7. The weight distribution is
symmetric with A(Z) = 1 + Z7 + 7(Z3 + Z4) = Z7 · A(Z−1).

(2) For the (n, 1, n)2 repetition code, it is obvious that A(Z) = 1 + Zn.
(3) Consider the (n, n−1, 2)2 parity-check code. The 2n−1 information words

of length k = n− 1 have a binomial weight distribution, i.e., there are
(
n−1
r

)
in-

formation words of weight r. When attaching the parity-check bit, information
words of an even weight are extended by a zero (the weight is unchanged) and
information words of an odd weight are extended by a one (the weight is in-
creased to the even value). Therefore A2r =

(
n−1
2r

)
+
(
n−1
2r−1

)
=
(
n
2r

)
and A2r−1 = 0

or

Ar =

(
n

r

)
if r is even

0 if r is odd

 . (4.5.8)

The property (3.5.6) can be easily verified with (A.2.2). �

The weight distribution of some codes can be roughly approximated by the
binomial distribution [83], i.e., for the binary case,

Ar ≈ 2k−n
(
n

r

)
. (4.5.9)

However, for Admin
this approximation is usually not suitable and (3.5.5) is not

fulfilled. The preceding examples clearly show the limited applicability of the
binomial approximation.

162 4. Linear Block Codes

4.5.2 Random Codes

We will now consider a binary random code again (as in the proof of the channel
coding theorem and as in Subsection 4.4.3), in which the encoded bits in all
codewords are chosen randomly and statistically independent and where 0 and
1 turn up with an equal probability of 50%, respectively. Then the weights of
the codewords have an exact binomial distribution according to (A.3.5) with
ε = 0.5. This distribution also occurs for the error pattern weight of a BSC with
pe = 0.5 according to (1.3.9). For a random code with the above definitions,
(3.5.9) is exactly valid for the expected values of the weight distribution, so

E(Ar) = 2k−n
(
n

r

)
. (4.5.10)

However, this random code is not linear and the codewords may even be identi-
cal. Random codes with definitely different codewords and systematic random
codes are discussed in [179].

In the case of linear random codes we will prove in Theorem 5.2 that the
average weight distribution has the exact form

E(Ar) =

1 for r = 0

2k−n
[(

n

r

)
−
(
n− k

r

)]
for 1 ≤ r ≤ n− k

2k−n
(
n

r

)
for n− k < r ≤ n

. (4.5.11)

The relations (3.5.4) to (3.5.6) can easily be verified.

4.6 Error-Detection Performance

In this section we will exclusively consider error-detection codes. The following
section will discuss the computation of the actual error probability which is
always related to error-correction codes.

The probability of an undetected error pattern can be exactly calculated with
the help of the weight distribution, however, the result can still have surprising
properties:

Theorem 4.14 (Error Detection). Let a linear (n, k, dmin)q code have the
weight distribution A0, . . . , An ↔ A(Z). For the transmission via the q-ary
symmetric hard-decision DMC with the symbol-error probability pe, the probabil-
ity Pue of an undetected error pattern (also called undetected word-error proba-

4.6 Error-Detection Performance 163

bility) can be calculated exactly as

Pue = P (e ∈ C\{0}) =
n∑

r=dmin

Ar

(
pe

q − 1

)r
(1− pe)

n−r (4.6.1)

= (1− pe)
n

[
A

(
pe

(q − 1)(1− pe)

)
− 1

]
.

For small pe and q = 2,

Pue ≈
n∑

r=dmin

Ar · pre = A(pe)− 1 (4.6.2)

≈ Admin
· pdmin

e . (4.6.3)

In the binary case Pue typically approaches its maximum at pe = 1/2 and is
exponentially limited by the number of parity-check bits:

Pue ≤ Pue(pe = 1/2) =
2k − 1

2n
≤ 2−(n−k). (4.6.4)

However, one must be cautious since there are also so-called improper codes
with Pue ! 2−(n−k) for pe � 1/2. Therefore (3.6.4) is sometimes also called the
fallacious upper bound [205].

Proof. (1) The equality in (3.6.1) is directly implied by

A

(
pe

(q − 1)(1− pe)

)
= 1 +

n∑
r=1

Ar

(
pe

q − 1

)r
(1− pe)

−r.

It does not matter whether the sum starts at r = 1 or r = dmin. For a small pe,
(3.6.2) and (3.6.3) follow directly from (3.6.1), and (3.6.4) follows directly from
(3.6.1) with the help of (3.5.6).

(2) Proof of (3.6.1). Let aν = (aν,0, . . . , aν,n−1) with 0 ≤ ν ≤ qk − 1 be an
enumeration of the codewords with a0 = 0 . Then

Pue = P (e ∈ C\{0}) =
qk−1∑
ν=1

P (e = aν).

Obviously e = aν means that

ej = aν,j = 0 with P (ej = 0) = 1− pe in n− wH(aν) positions,
ej = aν,j �= 0 with P (ej �= 0) = pe in wH(aν) positions.

The probability that ej will take on a specific non-zero value is pe/(q − 1).
Therefore, similar to (3.5.1) and (3.5.2),

Pue =

qk−1∑
ν=1

(1− pe)
n−wH(aν)

(
pe

q − 1

)wH(aν)

=
n∑
r=1

Ar · (1− pe)
n−r
(

pe
q − 1

)r
,

164 4. Linear Block Codes

where ν = 0 and r = 0 correspond to the all-zero word. �

Example 4.9. In the following, the error-detection performance is computed
for six different codes and shown in the Figures 3.5a,b.

(1) For the (n, 1, n)2 repetition code the definition of Pue implies that Pue =
P (e = 11 . . . 1) = pne . With A(Z) = 1 + Zn we get the same result

Pue = (1− pe)
n

(
A

(
pe

1− pe

)
− 1

)
= (1− pe)

n pne
(1− pe)n

= pne .

(2) For the (7, 3, 4)2 simplex code introduced in the next chapter (see Defi-
nition 4.5 and (4.4.3)), the weight distribution gives us the result of

Pue = (1− pe)
7

(
1 + 7

(
pe

1− pe

)4

− 1

)
= 7(1− pe)

3p4e.

(3) For the (7, 4, 3)2 Hamming code in Example 3.8(1)

Pue = 7p3e(1− pe)
4 + 7p4e(1− pe)

3 + p7e = 7p3e − 21p4e + 21p5e − 7p6e + p7e.

(4) For the (n, n− 1, 2)2 parity-check code with pe = 1/2 and (4.6.4) it can
be shown that Pue ≈ 1/2. According to (3.5.8),

Pue =

�n/2�∑
r=1

(
n

2r

)
p2re (1− pe)

n−2r.

For a small pe, Pue ≈ n(n− 1)

2
p2e.

(5) Let us now consider a (2k, k, 1)2 code which is intentionally poorly chosen
by setting all parity-check bits to zero in order to obtain a simple and clearly
arranged example of an improper code. Thus the weight distribution is not
affected by the parity-checks, Ar =

(
k
r

)
for 0 ≤ r ≤ k and Ar = 0 for r > k,

hence A(Z) =
∑

r

(
k
r

)
Zr = (Z +1)k according to (A.2.2). For the BSC with the

bit-error probability pe, according to (3.6.1),

Pue = (1− pe)
2k

((
pe

1− pe
+ 1

)k
− 1

)
= (1− pe)

k
(
1− (1− pe)

k
)
.

In particular for specific values of pe,

Pue =

{
2−k(1− 2−k) ≈ 0 for pe = 1/2
1/4 for pe = 1− 2−1/k ≈ 0

}
.

Thus the probability of undetected errors is small for a high BSC error rate, but
high for a small BSC error rate. Therefore this code violates the bound (3.6.4).

(6) The uncoded data transmission can formally be expressed by an (n, n, 1)2
code. From (1.3.6) we know that for the BSC Pue = 1 − (1 − pe)

n. The same
result derives from Ar =

(
n
r

)
and A(Z) = (1 + Z)n. �

4.6 Error-Detection Performance 165

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 p
e

 P
ue

(p
e)

(1)
(2)(3)(4)

(5)

(6)

Figure 4.7a. Undetected error probability (linearly scaled axes)

10
−2

10
−1

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 p
e

 P
ue

(p
e)

(1)

(2)

(3)

(4)

(5)

(6)

Figure 4.7b. Undetected error probability (both axes logarithmically scaled)

The Figures 3.5a and 3.5b show the performance results for the six codes
discussed in Example 3.9, where the block length is always chosen as 7 or 8. The

166 4. Linear Block Codes

labeling of the graphs is as in Example 4.9: (1) = (7, 1, 7)2 repetition code, (2)
= (7, 3, 4)2 simplex code, (3) = (7, 4, 3)2 Hamming code, (4) = (7, 6, 2)2 parity-
check code, (5) = (8, 4, 1)2 improper code, (6) = (7, 7, 1)2 uncoded transmission.
In both figures the same codes are used, however, in Figure 3.5a both axes are
linearly scaled and in Figure 3.5b both axes are logarithmically scaled. From (1)
to (6) the number of parity-check bits decreases, so the performance is decreased,
too. The deviating behaviour of the improper code (5) becomes obvious, Pue

approaches its maximum at pe = 1− 2−1/4 ≈ 0.16 according to Example 3.9(5).

Surprisingly, we can not derive generally valid statements from the seemingly
simple formula (3.6.1). The bound in (3.6.4) is generally only valid for pe = 1/2.
In [200, 234] and in other publications various codes are examined as to whether
they provide a smaller Pue for a smaller pe. Usually this is guaranteed for
most codes, however, there remain some improper codes including the widely
used (63, 24)2 BCH code (see Chapter 8) which actually does not satisfy the
fallacious bound (3.6.4). For most applications the cyclic redundancy check
(CRC) codes, discussed in Section 5.6, are used for error detection. Further
widely-used error-detection codes, particularly the shortened Hamming codes,
are covered in [180, 181]. The textbook [69] focuses on error-detection codes
only.

4.7 Error-Correction Performance

As seen in the previous section there is a single formula for the undetected
word-error probability which is based on the weight distribution of the code.
However, for the word-error probability at the output of an error-correction
decoder several cases have to be distinguished. An exact calculation is only
possible for hard-decision BMD decoding, whereas in all other cases only bounds
are available. These bounds are influenced by the channel properties as well as
by the code properties as contained in the weight distribution. In the following
subsections, always assuming channels with binary input, we will first discuss
the hard-decision DMC, then the general DMC and finally the AWGN with ideal
soft decisions.

4.7.1 Performance Bounds for Hard-Decision Decoding

For hard-decision decoding the received word y = a + e will be interpreted as
in (3.2.6) as the sum of the transmitted codeword a and an error word e. The
probability of an erroneous transmission (error-event probability)

Pee = P (e �= 0) = P (error pattern unequal to 0) (4.7.1)

was given in (1.3.6) and the undetected word-error probability

Pue = P (e ∈ C\{0}) (4.7.2)

4.7 Error Correction Performance 167

was calculated in Section 3.6. Now, for error-correcting codes, we are interested
in the word-error probability at decoder output (or word-error rate), according
to (1.6.1),

Pw = P (â �= a) = P (decoder error). (4.7.3)

In other words, Pw is the probability of the error patterns causing received words
which are not or wrongly decoded. The word-error probability is expected to
depend on the decoding method used.

Theorem 4.15 (Error Correction). For a linear (n, k, dmin)q code with t =
�(dmin − 1)/2� and transmission over a q-ary symmetric hard-decision DMC
with the symbol-error probability pe, the word-error probability after maximum-
likelihood decoding (MLD) is bounded above by

Pw ≤ 1−
t∑

r=0

(
n

r

)
pre(1− pe)

n−r =
n∑

r=t+1

(
n

r

)
pre(1− pe)

n−r. (4.7.4)

In particular, for bounded-minimum-distance decoding (BMD) as well as for
perfect codes this bound is tight and thus Pw can be computed exactly. In general,
the error probability Pcs for the q-ary information or encoded symbols is bounded
above by

Pcs ≤
n∑

r=t+1

min

{
1,

r + t

k

}(
n

r

)
pre(1− pe)

n−r. (4.7.5)

For a small pe the bounds become very tight and provide useful approximations:

Pw �
(

n

t+ 1

)
pt+1
e , Pcs � min

{
1,

dmin

k

}
· Pw. (4.7.6)

Proof. Since the MLD method is better than the BMD method, we only need
to prove the equality in (4.7.1) for the BMD. A correct BMD decoding takes
place if and only if a maximum of t errors occurs:

Pw = 1− P (correct decoding)

= 1− P (wH(e) ≤ t) = P (wH(e) ≥ t+ 1)

= 1−
t∑

r=0

P (wH(e) = r) =
n∑

r=t+1

P (wH(e) = r).

According to (1.3.12), the number of errors in a word of length n is binomially
distributed:

P (wH(e) = r) =

(
n

r

)
pre(1− pe)

n−r.

168 4. Linear Block Codes

Thus (3.7.1) is proven, the equality on the right side of (3.7.1) also derives
directly from the binomial formula (A.2.2). For the q-ary symbols we have

Pcs =
1

k
E(number of q-ary symbol errors per decoded word)

=
1

k

n∑
r=t+1

E(number of symbol errors per decoded word | wH(e) = r)

· P (wH(e) = r)

≤ 1

k

n∑
r=t+1

min{k, r + t} · P (wH(e) = r),

since the number of q-ary symbol errors per word is limited to the number k of
q-ary information symbols, though on the other hand limited to r + t, because
for the BMD decoder

wH(a , â) ≤ wH(a , y)︸ ︷︷ ︸
= r

+wH(y , â)︸ ︷︷ ︸
≤ t

.

For a small pe the first summand dominates the binomial sum on the right side
of (3.7.1). For Pcs, we observe that (r + t)/k = (2t+ 1)/k = dmin/k. However,
for a bigger pe the error probability in (3.7.3) might be so low, that the upper
bound could change into a lower bound. �

To prove this theorem the ML decoding was degraded to BMD decoding. In
this case the only influence is the minimum distance of the code, therefore the
weight distribution of the code does not occur in Theorem 4.15. We write Pb

instead of Pcs for the binary case with q = 2. The bit-error and word-error rates
in Figures 1.10, 1.11, 4.5 as well as the RS and BCH graphs in Subsections 8.1.5
and 8.2.3 were computed with the results of Theorem 4.15.

The result (4.7.6) has already been used in Section 1.7 for the derivation
of the asymptotic coding gain for hard-decision decoding, with the result that
Ga,hard = 10 · log10(R(t+1)) dB. With (4.7.6) the approximation for the relation
between the bit and word-error probability is justified again.

One should pay attention when numerically evaluating the binomial sum
in (3.7.1). For small values of pe the left side approximately is of the form
1 − (1 − Pw) = Pw which requires a very high numerical resolution. These
problems disappear when using the right side of (3.7.1).

Example 4.10. (1) According to Example 3.6(1), the (7, 4, 3)2 Hamming code
with t = 1 is perfect and therefore by using (3.7.1),

Pw = 1−
(
7

0

)
p0e(1− pe)

7 −
(
7

1

)
p1e(1− pe)

6

= 1− (1− pe)
7 − 7pe(1− pe)

6

4.7 Error Correction Performance 169

= 1− (1− 7pe + 21p2e − p3e . . .)− 7pe(1− 6pe + p2e . . .)

≈ 21p2e =

(
7

2

)
p2e.

This justifies the approximation in (3.7.3). The asymptotic coding gain is
Ga,hard = 10 · log10(4/7 · 2) = 0.6 dB.

(2) According to Theorem 3.10, the (n, 1, n)2 repetition code with n = 2t+1
is perfect and of course Pb = Pw. According to the left side of (3.7.3), we can

approximate Pb = Pw ≈
(
2t+ 1

t+ 1

)
pt+1
e for a small pe. The exact evaluation of

(3.7.1) for the three cases

pe =

0.00001 for n = 1
0.0018 for n = 3
0.010 for n = 5

always leads to Pb = Pw = 10−5. Thus with a bigger block length or a smaller
code rate a bad channel can be compensated for. If the BSC emerges from a
binary quantized AWGN with pe = Q(

√
2REb/N0), then the repetition code

turns out to be bad, since

Eb

N0
=

9.6 dB for n = 1
11.0 dB for n = 3
11.3 dB for n = 5

is required for Pb = Pw = 10−5. Hence, encoding causes degradations or costs
signal power instead of saving signal power. Correspondingly, the asymptotic
coding gain with Ga,hard = −1.8 dB for n = 3 or −2.2 dB for n = 5 turns out
to be negative. Thus trivial codes like the repetition code prove to be useless or
even disadvantageous. �

4.7.2 Performance Bounds for the General DMC Based

on the Union Bound

Now, we will consider the general DMC with binary input (q = 2). The error
probability for block codes with ML decoding turns out to be dependent on the

• code properties, given by the weight distribution (see Definition 3.7) and the

• channel properties, given by the Bhattacharyya bound γ (see Definition 2.4)
evaluated as

γ =

{ √
4pe(1− pe) BSC

e−Ec/N0 binary AWGN channel

}

for our two standard channels according to (3.2.13) and (3.2.15).

170 4. Linear Block Codes

In contrast to hard-decision decoding, the error probability now depends on the
complete weight distribution of the code and we can only derive upper bounds
for the word-error probability:

Theorem 4.16 (Union Bound for the General DMC). For a linear
(n, k, dmin)2 code with the weight distribution A0, . . . , An ↔ A(Z) and transmis-
sion over the DMC with the Bhattacharyya bound γ, the word-error probability
after maximum-likelihood decoding (MLD) is bounded by

Pw ≤
n∑

r=dmin

Arγ
r = A(γ)− 1. (4.7.7)

For good channels with a small γ, Pw is approximately bounded by the dominant
term in the summation,

Pw � Admin
· γdmin . (4.7.8)

A general weak upper bound without knowledge of the weight distribution is given
by

Pw ≤ (2k − 1) · γdmin . (4.7.9)

For both standard channels, the general bound is

Pw ≤

n∑
r=dmin

Ar ·
√

4pe(1− pe)
r
BSC

n∑
r=dmin

Ar · e−r·Ec/N0 binary AWGN channel

. (4.7.10)

Proof. The idea is similar to the proof of the R0 theorem in Section 2.8, though
this time we will give a detailed derivation to make the method of the union
bound clear. Let C = {a1, . . . ,a2k} be an enumeration of the code. With the
MLD rule the decoder is defined for all received words so that a wrong decoding
is equivalent to a wrong estimation for the codeword. The decision region of ai
is

Mi =
{
y
∣∣∣ P (y |ai) ≥ P (y |b) for all b ∈ C

}
.

The complementary set is composed of a union of non-disjoint sets as follows,

Mi = An
out\Mi =

{
y
∣∣∣ there exists j �= i with P (y |aj) > P (y |ai)

}
=

2k⋃
j=1
j �=i

{
y
∣∣∣ P (y |aj) > P (y |ai)

}
︸ ︷︷ ︸

=Mi,j

.

We presume the codeword ai has been transmitted. The first step is to derive
an upper bound for the probability Pi of the ML decoder deciding on one of the

4.7 Error Correction Performance 171

other 2k − 1 codewords aj . This is achieved by using the union bound method
(A.3.3) for the sum of the probabilities P (y ∈Mi,j|ai):

Pi = P (decoding error | ai transmitted)

= P (y �∈ Mi | ai transmitted)

= P

(
y ∈

2k⋃
j=1
j �=i

Mi,j

∣∣∣∣∣ ai transmitted

)

≤
2k∑
j=1
j �=i

P (y ∈Mi,j | ai transmitted).

The probabilities P (y ∈ Mi,j|ai) are the error probabilities for a code only
consisting of the two codewords ai and aj. For these so-called 2-codeword-error
probabilities the denotation P (ai → aj) is often used, since a decoding error at
this point means the decision on aj instead of ai. The second step is to derive an
upper bound for the 2-codeword-error probability by using the Bhattacharyya
bound (an exact calculation without approximations will be given in Theorem
3.17 for the special case of the AWGN channel):

P (y ∈Mi,j|ai) =
∑

y∈Mi,j

P (y |ai)

≤
∑

y∈Mi,j

P (y |ai)
√

P (y |aj)
P (y |ai)

=
∑

y∈Mi,j

√
P (y |ai)P (y |aj)

≤
∑

y∈An
out

√
P (y |ai)P (y |aj)

=
∑

y∈An
out

n−1∏
r=0

√
P (yr|ai,r)P (yr|aj,r) according to (1.3.2)

=

n−1∏
r=0

∑
y∈Aout

√
P (y|ai,r)P (y|aj,r)︸ ︷︷ ︸

= J(ai,r, aj,r)

according to Lemma 2.1.

According to Definition 2.4, J(ai,r, aj,r) = 1 for ai,r = aj,r and J(ai,r, aj,r) = γ
for ai,r �= aj,r is valid. Therefore

∏
r J(ai,r, aj,r) = γdH(ai,aj) and thus

Pi ≤
2k∑
j=1
j �=i

γdH(ai,aj) =
2k∑
j=1

γdH(ai,aj) − 1.

172 4. Linear Block Codes

The distance distribution can be replaced by the weight distribution and then
similar to Definition 3.7, we have

Pi ≤
∑
a∈C

γwH(a) − 1 =

n∑
r=dmin

Arγ
r.

This upper bound for Pi is independent of i, therefore, as in the proofs in Sections
2.7 and 2.8, we finally obtain the main result (3.8.1):

Pw = P (decoding error) =

2k∑
i=1

Pi · P (ai transmitted) ≤
n∑

r=dmin

Arγ
r.

Due to γ ≤ 1 the general weak upper bound (3.8.3) follows directly from (3.8.1).
The other approximations (3.8.2) and (3.8.4) are also obvious. �

The union bound is only useful for good channels with a small γ, because
the bound for bad channels can become greater than 1. For a sufficiently small
γ, Admin

γdmin is larger than Arγ
r for r > dmin irrespective of the weight distribu-

tion. So asymptotically for γ → 0 the higher coefficients of the complete path
enumerator and even Admin

are meaningless.

According to (3.8.4), Pw ≈ const · pdmin/2
e for the BSC. For an odd dmin,

t = (dmin − 1)/2 and therefore t+ 1 > dmin/2. Thus for hard-decision decoding
Theorem 3.15 is tighter than the union bound, which therefore turns out to
be asymptotically not exact. Considering the general applicability of the union
bound, this is not surprising.

4.7.3 Performance Bounds for the AWGN Channel with
Soft-Decision Decoding

For the AWGN channel with binary input and ideal soft-decision decoding the
union bound can be tightened to:

Theorem 4.17 (AWGN). For a linear (n, k, dmin)2 code with the weight dis-
tribution A0, . . . , An and transmission over the binary AWGN channel with ideal
soft decision, the word-error probability Pw is bounded by

Pw ≤
n∑

r=dmin

ArQ

(√
2r

Ec

N0

)
=

n∑
r=dmin

ArQ

(√
2Rr

Eb

N0

)
. (4.7.11)

For good channels with a high Eb/N0, Pw is approximately bounded by the dom-
inant term in the summation

Pw � Admin
Q

(√
2Rdmin

Eb

N0

)
. (4.7.12)

4.7 Error Correction Performance 173

For Eb/N0 → ∞, (3.8.6) is even asymptotically exact. A general weak upper
bound without knowledge of the weight distribution is given by

Pw ≤ (2k − 1) ·Q
(√

2Rdmin
Eb

N0

)
. (4.7.13)

Proof. Let C = {a1, . . . ,a2k} be an enumeration of the code and let ai =
(ai,0, . . . , ai,n−1) be transmitted and y = (y0, . . . , yn−1) = ai+ν be received. The
components in the noise word ν = (ν0, . . . , νn−1) are statistically independent
with the variance σ2 = N0/2. The encoded bits are in {+√Ec,−

√
Ec} according

to definition 1.3. As in the proof of Theorem 3.16 we will consider the decision
region of ai for which, according to Theorem 1.4

Mi =
{
y
∣∣∣ ‖y − ai‖ ≤ ‖y − b‖ for all b ∈ C

}
.

The complementary set is composed of the sets

Mi,j =
{
y
∣∣∣ ‖y − aj‖ < ‖y − ai‖

}
.

As in Theorem 3.16 the union bound gives us

Pi = P (decoding error | ai transm.) ≤
2k∑
j=1
j �=i

P (y ∈ Mi,j | ai transm.).

In constrast to Theorem 3.16, the 2-codeword-error probability can now be ex-
actly computed for the AWGN channel:

P (y ∈Mi,j | ai transm.)

= P
(
‖y − aj‖ < ‖y − ai‖

∣∣∣ ai transm.
)

= P
(
‖ν + ai − aj‖2 < ‖ν‖2

)
= P

(
n−1∑
r=0

(
ν2r + 2νr(ai,r − aj,r) + (ai,r − aj,r)

2
)
<

n−1∑
r=0

ν2r

)

= P

(
n−1∑
r=0

νr(ai,r − aj,r) < −1

2

n−1∑
r=0

(ai,r − aj,r)
2

)
.

In this case the probability only refers to the noise but not to the encoded bits.
For ai,r �= aj,r, (ai,r − aj,r)

2 = (2
√
Ec)

2, thus for the summation over r,∑
r

(ai,r − aj,r)
2 = 4dH(ai,aj)Ec.

174 4. Linear Block Codes

Furthermore, the random variable
∑

r νr(ai,r − aj,r) has a normal distribution
with the mean value 0 and the variance∑

r

N0

2
(ai,r − aj,r)

2 = 2dH(ai,aj)N0Ec.

Similar to (A.3.11) or (A.3.12), the Gaussian Q-function arises:

P (y ∈Mi,j | ai transm.) = P

n−1∑
r=0

νr(ai,r − aj,r)√
2dH(ai,aj)N0Ec

< − 2dH(ai,aj)Ec√
2dH(ai,aj)N0Ec

= Q

(√
2dH(ai,aj)

Ec

N0

)
.

Again similar to Theorem 3.16 the overall result for Pi is

Pi ≤
2k∑
j=1
j �=i

Q

(√
2dH(ai,aj)

Ec

N0

)
=

n∑
r=dmin

ArQ

(√
2r

Ec

N0

)
.

As in Theorem 3.16 the same bound follows for Pw. The bounds (3.8.6) and
(3.8.7) obviously follow from (3.8.5). We still need to prove the asymptotic
accuracy of (3.8.6). For this a lower bound can be derived for Pi by using the
2-codeword-error probabilities:

Pi = P

(
y ∈

2k⋃
j=1
j �=i

Mi,j

∣∣∣∣∣ ai transmitted

)

≥ max
j=1,...,2k

j �=i
P (y ∈Mi,j | ai transmitted)

= max
j=1,...,2k

j �=i
Q

(√
2dH(ai,aj)

Ec

N0

)

= Q

(√
2dmin

Ec

N0

)
.

(The last equality follows from the shape of the Gaussian Q-function shown in
Figure A.2). The same lower bound is also valid for Pw. Thus, on the whole, as
Eb/N0 →∞:

Q

(√
2Rdmin

Eb

N0

)
≤ Pw ≤ Admin

Q

(√
2Rdmin

Eb

N0

)
.

4.7 Error Correction Performance 175

The influence of the constant Admin
asymptotically disappears, thus the equality

in (3.8.6) is proven. �
According to (3.8.6) and (A.3.18), Pb ≈ const · Pw ≈ const · e−Rdmin·Eb/N0

for AWGN channels with soft-decision decoding, which has already been used
in (1.7.10) to derive the asymptotic coding gain with the result that Ga,soft =
10 · log10(Rdmin) dB.

Example 4.11. Again consider the perfect (7, 4, 3)2 Hamming code with A0 =
A7 = 1, A3 = A4 = 7, R = 4/7, dmin = 3 and t = 1. For this code, Pw is
depicted over Eb/N0 in Figure 3.5 to demonstrate the various previously derived
bounds for hard- and soft-decision decoding.

3 4 5 6 7 8 9 10 11 12 13 14 15
Eb/N0 [dB]

1

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

Hard -decision
(a) Exact
(b) upper bound with Ad
(c) upper bound without Ad

Soft -decision
(d) upper bound with Ad
(e) upper bound without Ad

Pw

Figure 4.8. Various performance bounds demonstrated on the (7, 4)2 Hamming
code

For hard decisions pe = Q(
√

2REb/N0) is valid. According to Theorem 3.15,
the exact result is

Pw = 1− (1− pe)
7 − 7pe(1− pe)

6 (curve a)

with Ga,hard = 10 · log10(R(t + 1)) = 10 · log10(4/7 · 2) = 0.58 dB. The upper
bound according to (3.8.4) is

Pw ≤ 7
√

4pe(1− pe)
3
+ 7
√

4pe(1− pe)
4
+
√

4pe(1− pe)
7

(curve b)

with Ga,hard = 10 · log10(Rdmin/2) = 10 · log10(4/7 · 3/2) = −0.67 dB, i.e., the
union bound has an asymptotic error of 1.25 dB for hard decisions. The general

176 4. Linear Block Codes

weak upper bound according to (3.8.3) is

Pw ≤ 15
√

4pe(1− pe)
3

(curve c).

Now, for soft decisions according to (3.8.5),

Pw ≤ 7Q

(√
2
4

7
3
Eb

N0

)
+ 7Q

(√
2
4

7
4
Eb

N0

)
+Q

(√
2
4

7
7
Eb

N0

)
(curve d)

with Ga,soft = 10 · log10(Rdmin) = 10 · log10(4/7 · 3) = 2.34 dB. The general weak
upper bound according to (3.8.7) is

Pw ≤ 15Q

(√
2
4

7
3
Eb

N0

)
(curve e).

In this example the gain by using soft-decision decoding is at least 2.34−0.58 =
1.76 dB, though this can only be realized for a small Pw. For a small Eb/N0 the
curves (d) and (e) intersect with curve (a), since the union bounds are upper
bounds and only the graph of (a) is exact. �

4.8 Problems

4.1. Prove Theorem 3.1 by rearranging the components.

4.2. Prove that for a linear binary code the number of codewords beginning
with 0 is equal to the number of codewords beginning with 1 as long as
there is at least one codeword beginning with 1.

4.3. Prove that always one of the following statements applies for a linear
binary code. Either every codeword has an even weight or codewords
with an odd and even weight occur the same number of times.

4.4. How many different linear (3, 2)2 block codes exist, if codes with a con-
stant zero component in each codeword are excluded?

4.5. Construct a linear (3, 2)3 block code which contains the words 101 and
120. Is the code unambiguous?

4.6. Determine the maximum minimum distance for the (4, 2)2 block codes
directly as well as with the Hamming bound.

4.7. A palindrome is a symmetric word, i.e., its letters taken in reverse order
result in the same word. Let C be the set of all palindromes over F2 of
length n. Is C a linear block code? Determine dmin and |C|.

4.8 Problems 177

4.8. Let C be a linear (n, k, d) block code. Construct the new code C′ = {a ∈
C|wH(a) even}. Is C′ linear? Determine (n′, k′, d′) for C′.

4.9. Given that there are 4 parity-check bits to correct 1 error per codeword,
how many information bits, at best, can be protected in the binary case?

4.10. Let a linear (n, 2)2 block code be able to correct 2 errors. Determine the
minimum block length and a possible code and interpret the result.

4.11. Prove that a perfect (11, 6)3 code can exist. How many errors are cor-
rectable? Such a code does actually exist and is called a ternary Golay
code. The perfect binary (23, 12, 7)2 Golay code has already been dis-
cussed in Figure 1.10 and Example 3.6(2).

4.12. Repeat Example 3.7 for a (127, k, 5)2 BCH code and compare the result
with Table 7.1.

4.13. Are the binary block codes (63, 31, 7), (63, 45, 7), (127, 109, 7) possible?
Compare the result with Table 7.1.

4.14. Which combinations for correcting and detecting errors are possible for
an (n, k, 8)2 block code?

4.15. According to Table 7.1, a (255, k, 11)2 code exists with k = 215. Com-
pare the code parameters with the Hamming and the Gilbert-Varshamov
bounds and their asymptotic forms.

4.16. For a linear (n, k)2 code, of which none of the codeword components are
always equal to zero, prove that

∑
a∈C

wH(a) = n2k−1 =

n∑
r=1

rAr = A′(1) (4.8.1)

(A′ being the derivate of the complete path enumerator).

4.17. Using the fact that the repetition code is perfect, prove that

t∑
r=0

(
2t+ 1

r

)
= 4t. (4.8.2)

How does this relate to (A.2.2)?

4.18. A (63, 36)2 BCH code can correct up to 5 errors. With 9 blocks of
a (7, 4)2 Hamming code put together, a (63, 36)2 code emerges whose
error correction capability is to be compared to that of the BCH code.
Determine the bit-error probability for the BCH code at pe = 10−3

approximately, as well as the asymptotic coding gain.

178 4. Linear Block Codes

4.19. Determine the upper bound for the word-error probability of the perfect
(15, 11, 3)2 Hamming code over the BSC with pe = 10−2. How exact is
the bound? Determine an upper bound for soft decisions (corresponding
to pe = 10−2) with as little effort as possible and interpret the result.

4.20. Consider the (n, 2)2 code C = {000...0, 100...0, 011...1, 111...1}. Prove
that Pue ≥ 2−nH2(1/n) at pe = 1/n and compare it to pe = 1/2 for
n = 100.

4.21. Given random codes with the average weight distribution according to
(3.5.10), prove the co-called Massey bound [205] for the undetected error
probability where the averaging is with respect to the individual worst
case BSC bit-error probability for every code:

E
(
max
pe

Pue

)
≤ n · 2−(n−k). (4.8.3)

4.22. Prove that the probability of undetected BSC error patterns when aver-
aging over all linear random codes with a weight distribution according
to (3.5.11) is given by

E(Pue) = 2−(n−k)(1− (1− pe)
k). (4.8.4)

Conclude from this that error-detection codes exist which fulfil the
bound (3.6.4) and moreover that on average about every second ran-
domly chosen linear error-detection code fulfils this bound.

4.23. Prove the inequality lim
n→∞

dn ≤ 2 for every arbitrary series of (n, n −
m, dn)2 codes with a fixed number m of parity-check bits.

4.24. For the mean value over all random codes prove the following asymptotic
properties as n→∞. For a fixed number of information bits dmin/n→
1/2 applies and for a fixed number of parity-check bits dmin/n → 0
applies.

4.25. Let C be a not necessarily linear (n, k, dmin)2 code. Let Bd(a) be the
number of all codewords of distance d from the codeword a . Obviously
n∑

d=0

Bd(a) = 2k. Prove that
∑
a∈C

Bd(a) is equal to the number of all

pairs of codewords of distance d. Prove the following generalization of
Theorem 3.14 for error-detection decoding.

Pue =

n∑
d=1

Ãd · pde(1− pe)
n−d, where Ãd = 2−k ·

∑
a∈C

Bd(a). (4.8.5)

4.26. (Based on the contribution of H.A.Loeliger in [22]). Let E ⊆ Fn
q be an

arbitrary set of error patterns with 0 ∈ E . A linear (n, k)q block code C
is said to

4.8 Problems 179

(1) correct all error patterns in E , if a + e �= a ′ + e ′ for all a ,a ′ ∈ C
with a �= a ′ and all e, e ′ ∈ E .

(2) detect all error patterns in E , if a + e �∈ C for all a ∈ C and all
e ∈ E\{0}. Prove that this is equivalent to C ∩ E = {0}.

Show that these definitions are generalizations of Definition 3.4. Con-
sider the set ∆E = {e − e ′|e, e ′ ∈ E} and prove the following equiva-
lences:

C corrects all error patterns in E
⇐⇒ C detects all error patterns in ∆E
⇐⇒ C ∩∆E = {0}.

Prove that
∆Kt(a) = K2t(0).

Prove the following generalization of the Hamming bound. If C corrects
all error patterns in E , then

Hq(E) = 1

n
logq |E| ≤ 1−R. (4.8.6)

For the BSC with the bit-error probability pe prove the asymptotic result

Hq(E) = H2

(
dmin

2n

)
= 1− R (4.8.7)

where H2 describes the binary entropy function according to (A.2.3).

180 4. Linear Block Codes

