
Chapter 3

Shannon Information Theory

The information theory established by Shannon in 1948 is the foundation dis-
cipline for communication systems, showing the potentialities and fundamental
bounds of coding. This includes channel coding (also called error-control coding)
as well as source coding and secrecy coding (also called cryptography). However,
in this chapter we will only consider the information theory of channel coding re-
stricted to the discrete memoryless channel (DMC). Although block codes have
not yet been discussed extensively, the results of Shannon’s information theory
will nevertheless become quite clear even with our present basic knowledge.

3.1 Channel Capacity of Discrete Memoryless

Channels

First, we will need a more detailed probability description of the stochastic input
and the stochastic discrete channel. Using the concepts of entropy and mutual
information the channel capacity will be introduced as a fundamental property
of the channel and calculated for the two standard examples of BSC and binary
AWGN channel. In the next section the meaning of the capacity will become
clear with the channel coding theorems.

3.1.1 The Joint Probability Distribution for Source and

Channel

A detailed explanation of the necessary probability basics and the relations
between joint, marginal and conditional distributions is given in Section A.3 of
the appendix.

Assume an abstract discrete memoryless channel (DMC) which is defined by
the triplet (Ain,Aout, Py|x) as in Subsection 1.3.1, where Ain is the q-ary input
alphabet and Aout is the output alphabet of the channel, and Py|x(η|ξ) or simply
P (y|x) is the transition probability (also called channel statistic) according to
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Definition 1.1. The input to the abstract DC (which is the same as the output
of the channel encoder) is a random variable x which is characterized by the a
priori distribution Px(ξ) or simply P (x). Recall that

P (y|x) = P (y received | x transmitted),
P (x) = P (x transmitted).

(3.1.1)

The probability description of the received signal y can be calculated from the
probability description of the input and the channel. According to Bayes’ theo-
rem of total probability (A.3.1), the probability that y is received turns out to
be

P (y) =
∑
x∈Ain

P (y|x) · P (x). (3.1.2)

For the joint probability distribution that x is transmitted and y is received,

P (x, y) = P (y|x) · P (x) = P (x|y) · P (y), (3.1.3)

also introducing the conditional probability P (x|y), i.e., x was transmitted as-
suming that y was received. The joint probability distribution P (x, y) leads to
P (y) and P (x) as marginal probability distributions:

P (y) =
∑
x∈Ain

P (x, y), P (x) =
∑

y∈Aout

P (x, y). (3.1.4)

For completeness, note that∑
x∈Ain

P (x) =
∑

y∈Aout

P (y) =
∑

y∈Aout

P (y|x) =
∑
x∈Ain

P (x|y) = 1. (3.1.5)

All previous statistical relations and the following definitions for entropy,
mutual information and channel capacity can also be introduced for the inner
DMC (Amod,Adem, Pỹ|x̃) with 2M -ary input, in a similar way as for the abstract
DMC (Ain,Aout, Py|x) with q-ary input.

3.1.2 Entropy and Information

The amount of information (also called uncertainty) of a random variable with
the q-ary range Ain is measured by the entropy

H(x) = −
∑
x∈Ain

P (x) log2 P (x) = −
q∑
i=1

pi log2 pi (3.1.6)

where pi denotes the probability that x attains the i-th value of the input al-
phabet. The concept of entropy, including all the proofs, is presented in detail
in Appendix A.5. The entropy is measured in units of bits, because of the use
of the logarithm to the base 2, and is generally bounded as 0 ≤ H(x) ≤ log2 q.
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The entropy H(x) takes on the minimum value 0, if the random variable x is
constant.

The entropy takes on its maximum, if all values are attained with the same
probability of pi = 1/q. Such a uniform distribution was presupposed for the
derivation of the maximum-likelihood decoder in Section 1.6, i.e., all codewords
and all components of the codeword occur with the same probability. Then
the information symbols and the information words have the maximum possible
entropy H(x) = log2 q and H(x ) = k · log2 q, respectively. For the entropy of
the received values, H(y) ≤ log2 |Aout| assuming that |Aout| is finite.

The joint entropy of two random variables x and y is a generalization of the
entropy to the joint distribution:

H(x, y) = −
∑

x∈Ain,y∈Aout

P (x, y) log2 P (x, y). (3.1.7)

If x and y are two statistically independent random variables, then obviously
H(x, y) = H(x)+H(y). The definition of the entropy can be further generalized
to the conditional entropy of x for a given y:

H(x|y) = −
∑
x,y

P (x, y) log2 P (x|y), (3.1.8)

which is lower and upper bounded by

0 ≤ H(x|y) ≤ H(x), (3.1.9)

where equality occurs on the left side for x ≡ y and equality on the right side for
statistically independent random variables x and y. So if there is a dependence
between x and y, the uncertainty of x is reduced by the increasing knowledge
of y, i.e., conditioning on random variables can never increase uncertainty, but
reduces uncertainty by the amount of H(x)−H(x|y).

3.1.3 Mutual Information and Channel Capacity

We recall that the actual task of information transmission over a stochastic
channel is to decide on the input x from the output y with a minimum of
uncertainty. So the separated entropies of input and output are not the only
relevant properties, but also the relation between input and output, which should
be as close as possible. Now, we will introduce an important mathematical
measure for this input-output relation, which is based on the joint distribution
of input and output:

Definition 3.1. Between two random variables and in particular between the
input and the output of the DMC the mutual information indicates how much
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information one of the random variables reveals about the other:

I(x; y) =
∑

x∈Ain,y∈Aout

P (x)P (y|x) log2
P (y|x)∑

x′∈Ain

P (x′)P (y|x′)
(3.1.10)

=
∑

x∈Ain,y∈Aout

P (x, y) log2
P (x, y)

P (x)P (y)
(3.1.11)

=
∑

y∈Aout

P (y) log2
1

P (y)︸ ︷︷ ︸
= H(y)

−
∑

x∈Ain,y∈Aout

P (x, y) log2
1

P (y|x)︸ ︷︷ ︸
= H(y|x)

(3.1.12)

=
∑
x∈Ain

P (x) log2
1

P (x)︸ ︷︷ ︸
= H(x)

−
∑

x∈Ain,y∈Aout

P (x, y) log2
1

P (x|y)︸ ︷︷ ︸
= H(x|y)

(3.1.13)

= −
∑

x∈Ain,y∈Aout

P (x, y) log2
1

P (x, y)︸ ︷︷ ︸
= H(x, y)

+ H(x) + H(y). (3.1.14)

The equivalence of these five terms follows from the elementary relations
between the various probability functions previously mentioned in Subsection
3.1.1. In (3.1.10), I(x; y) is characterized by the input distribution P (x) and
the channel properties represented by the transition probability P (y|x). Equa-
tion (3.1.11) emerged from the joint distribution and the two marginal proba-
bility distributions. The last three equations are based on entropies. In (3.1.12)
the mutual information is determined by the difference between the output en-
tropy H(y) and the conditional entropy H(y|x) and in (3.1.13) by the difference
between the input entropy H(x) and the conditional entropy H(x|y). These
conditional entropies have specific names, H(y|x) is called noise entropy or pre-
varication, and H(x|y) is known as equivocation. In the last term (3.1.14), the
mutual information is expressed by the joint entropy and the two marginal en-
tropies.

The mutual information is obviously symmetrical in x and y. Appendix
A.5 shows that all entropies, including the conditional entropies as well as the
mutual information, are non-negative.

The relations between the entropies and the mutual information are shown
in Figure 3.1, which implies the following interpretations.
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Figure 3.1. The DMC from the entropy’s point of view

• Firstly, H(x) = I(x; y) +H(x|y), so the transmitted information measured
by H(x) is reduced by H(x|y). The uncertainty of the transmitted input,
expressed by H(x|y), should be as small as possible for a given received
output.

• Secondly, H(y) = I(x; y) + H(y|x), so a further entropy H(y|x) is added
to the channel, where the uncertainty of the output y for a given input x
represents the stochastic behaviour of the channel.

• The information passed from the transmitter to the receiver is the ac-
tual mutual information I(x; y), which is obviously bounded as I(x; y) ≤
min{H(x), H(y)}.

Example 3.1. Let us consider the two extreme cases, worst case and best case,
for the DMC.

(1) The worst case is that there are no statistical dependencies between
the input and the output of the DMC, i.e., no information can be transmitted.
In this case x and y are statistically independent, and the joint distribution is
factorized as P (x, y) = P (x)P (y). Then in (3.1.11) log2(. . .) = 0, and

I(x; y) = 0, H(y|x) = H(y), H(x|y) = H(x), H(x, y) = H(x) +H(y).
(3.1.15)

The second equation, H(y|x) = H(y), means that the information content of y
is independent of whether or not x is known. For a good channel, y should have
no content of information if x is known, since y should be determined by x. The
third equation, H(x|y) = H(x), can be interpreted accordingly. Furthermore,
I(x, y) = 0 is equivalent to x and y being statistically independent.

(2) The best case is that the channel is transparent, i.e., x ≡ y. Then the
channel is no longer stochastic but deterministic, thus obviously P (y) = P (x)
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and

P (y|x) =
{

1 y = x
0 y �= x

}
, P (x, y) =

{
P (x) y = x
0 y �= x

}
.

Considering H(y|x) in (3.1.12) it turns out that for y = x, log2(. . .) = 0, and
P (x, y) = 0 otherwise. Thus H(y|x) = 0, i.e., for a given x there is no uncer-
tainty of y. H(x|y) = 0 can be interpreted accordingly. Summarizing,

I(x; y) = H(y) = H(x) = H(x, y), H(y|x) = 0, H(x|y) = 0. (3.1.16)

For uniformly distributed input symbols, I(x; y) = H(x) = log2 q. �

Definition 3.2. The channel capacity C of the DMC (Ain,Aout, Py|x) is defined
as the maximum of the mutual information over of all possible input statistics,
i.e., over all a priori distributions:

C = max
Px

I(x; y), (3.1.17)

where the capacity is measured in units of information bits per q-ary encoded
symbol, in other words, per use of the abstract discrete channel.

The capacity is bounded as 0 ≤ C ≤ log2 q (with q = 2 for binary input).
For C = 0 the output is statistically independent of the input and no information
can be transmitted. For C = log2 q the channel is transparent.

To achieve the maximum channel capacity, the input and thus the source
probability distribution would have to be adapted according to the channel
statistic. This is usually difficult to handle. However, for symmetric chan-
nels, the maximum of the mutual information will always occur for the uniform
distribution of the input alphabet. This is particularly true for the binary chan-
nel. In this case the encoding is also binary and creates a uniform distribution
of the codewords. The channel capacity does not only determine the design of a
code, but more importantly it enables us to judge and to numerically evaluate
a discrete channel or a modulation system.

3.1.4 Calculation of C for the BSC and the binary

AWGN Channel

Example 3.2. Calculation of the channel capacity C for the BSC and the bi-
nary modulated baseband AWGN channel.

(1) BSC with the bit-error rate pe. The maximum of I(x; y) occurs because
of the symmetry at Px(0) = Px(1) = 0.5. If x is uniformly distributed, then so
is y with Py(0) = Py(1) = 0.5, so H(y) = 1. The equation

P (x, y) = P (x)P (y|x) =
{

(1− pe)/2 y = x
pe/2 y �= x

}
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implies that

H(y|x) =− Px,y(0, 0) log2 Py|x(0|0)− Px,y(0, 1) log2 Py|x(1|0)
− Px,y(1, 0) log2 Py|x(0|1)− Px,y(1, 1) log2 Py|x(1|1)

=− 1− pe
2

log2(1− pe)− pe
2
log2(pe)

− pe
2
log2(pe)−

1− pe
2

log2(1− pe).

Hence, the channel capacity of the BSC is

C = 1 + pe log2(pe) + (1− pe) log2(1− pe) (3.1.18)

= 1−H2(pe),

where H2(pe) is the binary entropy function as defined in Appendix A.2. The
channel capacity C is symmetrical with C(pe) = C(1−pe) and we have C(0) = 1
and C(0.5) = 0. The capacity C is shown in Figure 3.2 together with the cutoff
rate R0 (see Definition 3.3).
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Figure 3.2. Channel capacity C and cutoff rate R0 of the BSC
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(2) AWGN channel. The maximum of I(x; y) occurs because of the sym-
metry at Px(−

√
Ec) = Px(+

√
Ec) = 0.5. Then the probability density function

(PDF) of y is given by

fy(η) =
1

2

(
fy|x(η| −

√
Ec) + fy|x(η|+

√
Ec)
)
.

The sum over y in (3.1.10) is now transformed into an integral

C =
1

2

∞∫
−∞

(
fy|x(η|+

√
Ec) log2

fy|x(η|+
√
Ec)

fy(η)

+fy|x(η| −
√

Ec) log2
fy|x(η| −

√
Ec)

fy(η)

)
dη. (3.1.19)

Then with the PDF fy|x(η|ξ), as given in (1.3.11), this leads on to

C =
1

2
√
πN0

∞∫
−∞

(
e−(η−√

Ec)2/N0 log2
2e−(η−√

Ec)2/N0

e−(η−√
Ec)2/N0 + e−(η+

√
Ec)2/N0

+e−(η+
√
Ec)2/N0 log2

2e−(η+
√
Ec)2/N0

e−(η−√
Ec)2/N0 + e−(η+

√
Ec)2/N0

)
dη.

The substitution α = η
√

2/N0 and the abbreviation v =
√

2Ec/N0 simplify the
result to

C =
1

2
√
2π

∞∫
−∞

(
e−(α−v)2/2 log2

2

1 + e−2αv
+ e−(α+v)2/2 log2

2

1 + e2αv

)
dα.

(3.1.20)
This integral can not be analytically calculated in a closed form. Numerical in-
tegration provides the curve Csoft of the channel capacity for the AWGN channel
in Figure 3.3. The channel capacity increases continuously from 0 to 1, if Ec/N0

runs from 0 to +∞ (or from −∞ to +∞ if referring to decibels). For the R0

curves see Subsection 3.2.5. �

Although the channel models BSC and AWGN are of great practical and
theoretical importance, there are also other relevant channels with asymmetric
transition probabilities where the maximum of the mutual information does not
occur for the uniform a priori distribution of the input alphabet.

3.2 Channel Coding Theorems

We start with an overview of the section’s content. First of all, the original Shan-
non coding theorem for noisy channels is introduced and discussed in Subsection
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Figure 3.3. Channel capacity C and cutoff rate R0 of the AWGN channel with
binary input

3.2.1 for the abstract DC and in Subsection 3.2.2 in particular for an inner DC
with high-level modulation. Furthermore, we will introduce an extension based
on the error exponent in Subsection 3.2.3. More important in practice than the
channel capacity C is the cutoff rate R0 (also called R0 criterion), as mentioned
in Figures 3.2 and 3.3 and to be defined in Subsection 3.2.4, which is closely
related to the Bhattacharyya bound as to be introduced in Subsection 3.2.5.
After previously calculating C for the BSC and AWGN channel in Subsection
3.1.4, we will calculate R0 correspondingly in Subsection 3.2.6.

3.2.1 Shannon’s Noisy Channel Coding Theorem

The importance of the channel capacity becomes clear with the famous noisy
channel coding theorem published by C.E.Shannon in the year 1948 (see [129,
130] for reprints of Shannon’s classical papers), which forms the fundamental
basis for digital communications.

Theorem 3.1 (Shannon’s Noisy Channel Coding Theorem). Let C be
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the channel capacity of the abstract DMC with the q-ary input alphabet Ain.
Then by using error-control coding and maximum-likelihood decoding, the word-
error rate Pw can be made arbitrarily low, if the code rate Rq = R · log2 q is lower
than C.
A more precise statement is that for each ε > 0 and ε′ > 0 there exists an

(n, k)q block code with Rq = k/n · log2 q such that
C − ε′ ≤ Rq < C and Pw < ε.

The so-called converse to the coding theorem is that for Rq > C, Pw can never
fall below a certain bound.

The proof is fairly simple for the special case of the BSC and is given in
Section 3.6.

This result is certainly surprising: the channel properties only impose an
upper bound on the transmission rate and on the throughput, but not on the
quality of the transmission. So for higher quality requirements, we do not have
to reduce the data rate, nor improve the channel, but merely increase the block
length and thus the complexity. Important examples confirming these facts are
shown in Figures 8.9 to 8.12 displaying the error probability of the BCH codes
over Eb/N0. Formally, the channel coding theorem can also be stated as: there
exists a sequence of (ns, ks)q block codes Cs such that

lim
s→∞

Pw(Cs) = 0 and lim
s→∞

ks
ns
· log2 q = C.

As already explained in Definition 1.4, Rq = R · log2 q is the code rate in
units of information bits per q-ary input symbol of the abstract DC. Since the
definition of the channel capacity is based on the binary logarithm and therefore
refers to information bits per q-ary input symbol of the abstract DC, C has to
be compared to Rq instead of R.

Example 3.3. We illustrate some applications of the channel coding theorem
for the binary case, so q = 2 and Rq = R.

(1) Let C be the channel capacity of a binary DMC which can be used rc
times per second, hence the encoded bit rate is also rc bit/s. Then we can choose
a code rate R, which only has to be insignificantly lower than C, such that by
using channel coding with an appropriately large block length, information bits
can be transmitted at the rate of rb = R · rc for an arbitrarily low bit-error rate.

The channel capacity can also be expressed in information bits per second
by C∗ = C · rc, hence R < C is equivalent to rb = R · rc < C · rc = C∗ for the
binary case (the general case with non-binary q will be examined closely in the
next subsection).

(2) For example let rc = 1000 encoded bit/s and C = 0.60 information
bit/channel use, then C∗ = 600 information bit/s. Thus almost rb = 600 in-
formation bit/s can be transmitted with an arbitrarily low error rate for an
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appropriately large block length. Assume that a change in the modulation sys-
tem creates another DMC with rc = 800 encoded bit/s and C = 0.75 information
bit/channel use, so that the same capacity C∗ = 600 information bit/channel
use results. Then rb is again limited to 600 information bit/s. The questions of
which DMC is actually more suitable and how C depends on rc can generally
not be answered definitively.

(3) Consider a BSC with pe = 0.01 which can be used at rc = 1 000 000
encoded bit/s. On average per second 990 000 bits are received correctly and
10 000 bits are wrong. Even information bit rates considerably lower than
900 000 bit/s can not be reliably transmitted without error-control coding. The
channel capacity is

C = 1 + 0.01 · log2 0.01 + 0.99 · log2 0.99 = 0.919

information bit/channel use or C∗ = 919 000 information bit/s. If rb = 900 000
information bit/s is chosen with a code rate of R = 0.9, then by using coding,
less than 1 error per second or an even lower error rate can be achieved. �

The channel coding theorem is purely a theorem of existence and does not
provide any instructions on how to construct the block codes. So Shannon did
not create any clever codes, but chose block codes at random. Surprisingly, it is
possible to prove the theorem for the average over of all block codes, and there
is obviously at least one code which is as good as the mean. This technique is
known as random coding argument. However, do not conclude that it is easy
to find and to handle such codes. Actually, even now, half a century after
Shannon’s Theorem was published, no family of binary block codes is known
(except for concatenated codes), where for a sequence of codes of increasing
block length the error probability converges to zero. So we have to accept that
almost all codes are good except for the ones we already know. The reason for
this dilemma is that only a few codes of very large block length with their precise
properties are really known in the algorithmic sense. Only codes with a very
comprehensive and homogeneous mathematical structure are known or can be
known in principle, but these only form a small subset of all codes. This subset
hardly influences the mean of all block codes, thus the mean of all codes is far
away from the properties of this subset.

A more extensive discussion of these observations is given, for example, in
[155, 161] in a mathematical precise form. In Subsection 4.4.3 and in the follow-
ing, random codes will be discussed again, however, under a slightly different
aspect, i.e., referring to the minimum distance.

To conclude, the mathematical or algebraic structure of the codes is required
for the analysis of the codes and their application in practice, and therefore
forms the basis of error-control coding which will be discussed extensively in
the following chapters. However, this structure prevents us from finding very
powerful codes according to the channel coding theorem. In summary there are
the following possibilities to improve the quality of the transmission:



98 3. Shannon Information Theory

(a) increase the channel capacity C by improving the channel (e.g., increase the
transmit power or improve the link budget by larger antennas),

(b) reduce the code rate R to allow more redundancy, however, this requires
an increase of discrete channel symbol rate and therefore an increase of the
bandwidth,

(c) increase the block length n of the code, which is exactly the essence of the
channel coding theorem.

3.2.2 Shannon’s Noisy Channel Coding Theorem

Restated for High-Level Modulation

In Subsections 1.3.3 and 1.4.2 we had explicitly distinguished between the inner
discrete channel with 2M -ary input and the abstract discrete channel with q-
ary input, which is defined as the combination of the inner DC and the pair
mapping-demapping. Based on this, we will state the Noisy Channel Coding
Theorem once more and make clear which part q and M play.

All previous considerations referred to the abstract DC, but for clarity, in
this subsection, we use the term Cabstract to describe the corresponding channel
capacity in units of information bits per q-ary input of the abstract DC. Corre-
spondingly, Cinner in units of information bits per 2M -ary input of the inner DC
shall denote the channel capacity for the inner DC, which, in actual fact, has
already been implicitly used in Subsection 3.1.4 for the example of the AWGN
channel.

In Subsection 1.4.2, we considered the pair mapping-demapping as part of
the coding scheme as well as part of the abstract channel, and we shall now
discuss these two cases again but with the help of Figure 3.4. We start out
from the inner DC with Cinner and the symbol rate rs = 1/Ts in units of 2M -
ary modulation symbols per second. We obtain an encoded symbol rate of
rs·M/ log2 q and an encoded bit rate of rc = rs·M between encoder and mapping,
since according to (1.2.6) the mapping causes an increase of the symbol rate by
a factor of (log2 q)/M . Thus, the information bit rate is rb = rc · R = rs · RM
in units of information bits per second.

The mapping as part of the coding scheme, as adopted in Figure 1.10 and
in the upper half of Figure 3.4, leads to a (ñ, k̃)q̃ code, where ñ = (n log2 q)/M ,
k̃ = (k log2 q)/M and q̃ = 2M . According to Theorem 3.1, applied to the inner
DC,

RM = RM =
k̃

ñ
· log2 q̃

!
< Cinner. (3.2.1)

The channel capacity Cabstract of the abstract DC can be obtained from Cinner

by a simple consideration. Since the transition probabilities of the abstract DC
for blocks of length n and of the inner DC for blocks of length ñ are identical,
n · Cabstract = ñ · Cinner must be satisfied, thus Cabstract = Cinner · (log2 q)/M .
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Figure 3.4. Capacities of abstract and inner discrete channel

According to Theorem 3.1, applied to the abstract DC, as shown in the lower
half of Figure 3.4,

Rq =
k

n
· log2 q

!
< Cabstract = Cinner · log2 q

M
. (3.2.2)

Since this is simply equivalent to (3.2.1), it turns out that both approaches lead
to the same result. The term C∗ is used to describe a different form of the
channel capacity, which refers to information bits per second, and is defined as
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the product of the channel capacity in reference to symbols and the symbol rate:

C∗ = Cabstract · rsM

log2 q
= Cinner · rs in units of

[
information bit

second

]
. (3.2.3)

The two conditions RM < Cinner and Rq < Cabstract are equivalent to each other
as well as to

RM = RM < Cinner, or equivalently rb < C∗. (3.2.4)

Therefore the channel capacity C∗ turns out to be an upper bound for the
throughput rb, if an arbitrarily small bit-error rate is to be achieved by channel
coding. Obviously, the channel capacity can be solely described by the inner
DC, since the mapping and the value of q are irrelevant.

A simple, direct trade-off between R and M seems to be possible at first
glance, because Cinner is an upper bound for the product RM = RM and Cinner

depends on the symbol rate (and therefore on the bandwidth of the waveform
channel), which again only depends on RM = RM because of rs = rb/(RM).
In Section 3.4, we will examine this in detail for the example of the AWGN
channel and practical modulation schemes, because this builds the foundation
for trellis coded modulation (TCM), discussed in Chapter 11. We will realize
that factoring a given value of RM as

R =
RM

RM + 1
and M = RM + 1 (3.2.5)

delivers a reasonable result. For example, for RM = 2, R = 2/3 and M = 3 is
a sensible choice, whereas R = 2/4 and M = 4 is of no advantage. The results
and curves for C and R0 in Section 3.4 will help to make this become clear.

3.2.3 The Error Exponent

Theorem 3.1 is unsatisfactory in that the required block length can not be upper
bounded. However, there is the following refinement [19, 42, 139]:

Theorem 3.2 (Channel Coding Theorem Based on Error Exponent).
Let C be the channel capacity of the abstract DMC with the q-ary input alphabet
|Ain|. Furthermore, let

Er(Rq) = max
0≤s≤1

max
Px


−sRq − log2

∑
y∈Aout

(∑
x∈Ain

P (x) · P (y|x) 1
1+s

)1+s



(3.2.6)
be the error exponent (also called Gallager exponent), which is solely defined by
the DMC and the code rate. The behaviour of this function is described by

Er(Rq) > 0 for Rq < C
Er(Rq) = 0 for Rq ≥ C.

(3.2.7)
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Then there always exists an (n, k)q block code with Rq = k/n · log2 q < C, such
that

Pw < 2−n·Er(Rq) (3.2.8)

for the word-error probability Pw.

In (3.2.8), the word-error probability Pw, the block length n, the code rate
Rq as well as the channel properties as represented by the error exponent Er(Rq),
i.e., all important parameters of coded digital transmission, are condensed in one
simple formula.

C

R0

R

R0

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0

Er(R)

Rcrit

Figure 3.5. Typical behaviour of the error exponent
(demonstrated by the BSC for pe = 0.02, C = 0.859, R0 = 0.644)

The error exponent is not a parameter only defined by the DMC, as is the
channel capacity, but it is a function of both the code rate and the DMC. If the
function Er(Rq) is given, then the required block length n can be determined
explicitly for a given Pw. The typical curve of the error exponent is shown in
Figure 3.5. We will not prove that Er(Rq) is a ∪-convex monotonic decreasing
function. FromRq = 0 to a point Rq = Rcrit the gradient is−1 and the maximum
is attained at s = 1. The value of the error exponent at Rq = 0 is important
and therefore will be discussed separately in the following section.

3.2.4 The R0 Theorem

The channel capacity C is a theoretical bound which the realizable codes or
the codes used in practice are far from reaching. However, the cutoff rate R0

[186, 204], defined below, is achievable with an acceptable amount of effort. This
is not meant as a precise mathematical statement, but will become obvious from
examples discussed in Section 12.?.

We will not prove that the maximum for Er(0) is attained at s = 1.
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Definition 3.3. The value of the error exponent at Rq = 0 is denoted R0 and
is called cutoff rate or R0 criterion:

R0 = Er(0) = max
Px


− log2

∑
y∈Aout

(∑
x∈Ain

P (x)
√

P (y|x)
)2

 . (3.2.9)

A third term often used forR0 is computational cutoff rate orRcomp, however,
this only makes sense in connection with the theory of sequential decoding which
is not discussed here. If in the definition of the error exponent s = 1 is set, we
obtain the lower bound (see also Figure 3.5)

Er(Rq) ≥ max
Px


−Rq − log2

∑
y∈Aout

(∑
x∈Ain

P (x) · P (y|x) 1
2

)2



= R0 − Rq.

From (3.2.8) we obtain the following explicit estimate for the word-error prob-
ability Pw for code rates Rq between 0 and R0:

Theorem 3.3 (R0 Theorem). For an abstract DMC with q-ary input and
with the cutoff rate R0, there always exists an (n, k)q block code with the code
rate Rq = k/n · log2 q < R0 such that when using maximum-likelihood decoding,

Pw < 2−n(R0−Rq) (3.2.10)

for the word-error probability Pw. Similarly as for the channel coding theorem,
a code rate Rq arbitrarily close to R0 can be achieved.

The direct proof of the R0 Theorem, without using Theorem 3.2, is fairly
simple and will be given in Section 3.7 for the general DMC. However, we will use
the random coding argument again, as we did for the channel coding theorem,
so the proof will not provide any construction rules for good codes. So the closer
Rq is to R0, the larger the block length n has to be, to be able to guarantee the
same error rate.

The different bounds on the word-error probability Pw depending on the
various ranges of the code rate are listed below:

0 < Rq < R0 : Pw is explicitly bounded by the block length n and the difference
R0 − Rq. This bound can be numerically calculated.

R0 < Rq < C : Pw is theoretically bounded by the block length n and the func-
tion Er(Rq). The bound can hardly be calculated except for
some simple cases.

C < Rq : Pw can not become arbitrarily low, and a lower bound exists and
can be calculated.
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The upper bound for Pw is, of course, only valid for an optimally chosen code
according to the R0 Theorem or the channel coding theorem. For the codes
applied in practice, which are designed with specific structures to save processing
effort for encoding und decoding, Pw might be much larger. Other than for
Theorem 3.3, the cutoff rate proves to be useful for evaluating a modulation
scheme for channel coding, while other criteria are not suitable:

• the channel capacity is not suitable for evaluating since it is only a theo-
retical bound which requires codes with a large block length (and thus an
accordingly long delay) and high complexity.

• the error probability is also not suitable since the quantization in hard-
decision demodulators discards certain information which might have greatly
improved the decoding. This loss of information is not captured by the error
probability.

However, R0 can be helpful for the following points. The error probability can be
bounded for optimally chosen codes (see the R0 Theorem 3.3) as well as for given
codes (see Theorem 4.16 on the union bound). Furthermore, trade-offs between
the block length, the code rate, the number of levels of the modulation scheme,
the signal-to-noise ratio and the error probability can be calculated. Finally, R0

enables us to determine the gain from soft-decision over hard-decision decoding
as well as the design of the quantization operation for optimal soft decisions,
this will become clear in Subsection 3.2.5.

3.2.5 The Bhattacharyya Bound

Assume a symmetric DMC with binary input Ain = {0, 1}, then the defining
expression (3.2.9) for R0 can be greatly simplified to

R0 = − log2


 ∑
η∈Aout

(∑
ξ∈Ain

Px(ξ)
√

Py|x(η|ξ)
)2



= − log2

[
1

4

∑
η∈Aout

(√
Py|x(η|0) +

√
Py|x(η|1)

)2]

= − log2

[
1

4

∑
η∈Aout

Py|x(η|0) + 1

4

∑
η∈Aout

Py|x(η|1)

+
1

2

∑
η∈Aout

√
Py|x(η|0)Py|x(η|1)

]

= 1− log2

[
1 +

∑
η∈Aout

√
Py|x(η|0)Py|x(η|1)

]
.

This leads to the following definition.
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Definition 3.4. For the symmetric DMC with binary input Ain = {0, 1} the
Bhattacharyya bound is defined as

γ =
∑

η∈Aout

√
Py|x(η|0)Py|x(η|1). (3.2.11)

The relation to R0 is

R0 = 1− log2(1 + γ) , γ = 21−R0 − 1. (3.2.12)

It is obvious that γ ≥ 0 and with Schwarz’s inequality (A.1.9)

γ2 =

( ∑
η∈Aout

√
Py|x(η|0)Py|x(η|1)

)2

≤
∑

η∈Aout

√
Py|x(η|0)

2

·
∑

η∈Aout

√
Py|x(η|1)

2

= 1.

Thus 0 ≤ γ ≤ 1, so 0 ≤ R0 ≤ 1. The best case is γ = 0, R0 = 1, and the worst
case is γ = 1, R0 = 0.

In Subsection 4.7.2 we will see that the error probability of a block code is
characterized by a combination of code properties and channel properties. The
channel properties are represented by γ. Therefore γ forms the basis for the
calculation of Pw.

3.2.6 Calculation of R0 for the BSC and the binary

AWGN Channel

Example 3.4. Calculation of the Bhattacharyya bound γ and the cutoff rate
R0 for the BSC and the binary modulated baseband AWGN channel.

(1) BSC with the bit-error rate pe. From (3.2.11) we can derive

γ =
√

Py|x(0|0)Py|x(0|1) +
√

Py|x(1|0)Py|x(1|1)
=
√

(1− pe)pe +
√

pe(1− pe)

=
√

4pe(1− pe), (3.2.13)

thus

R0 = 1− log2

(
1 +
√

4pe(1− pe)
)
. (3.2.14)

This result is shown in Figure 3.2 together with the channel capacity.
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(2) AWGN channel. The summation in (3.2.11) is transformed into an
integration:

γ =

∞∫
−∞

√
fy|x(η|

√
Ec)fy|x(η| −

√
Ec) dη

=

∞∫
−∞

√
e−(η−√

Ec)2/N0

√
πN0

· e
−(η+

√
Ec)2/N0

√
πN0

dη

=
1√
πN0

∞∫
−∞

e−(η2+Ec)/N0 dη

= e−Ec/N0 · 1√
πN0

∞∫
−∞

e−η
2/N0 dη

= e−Ec/N0 . (3.2.15)

This implies that
R0 = 1− log2

(
1 + e−Ec/N0

)
(3.2.16)

which is shown in Figure 3.3, labeled R0,soft, together with the channel capac-
ity. For binary quantization at the output of the DMC we obtain a BSC with
pe = Q(

√
2Ec/N0) and the curve R0,hard. Obviously hard decisions imply a loss

of about 2 dB over soft decisions in reference to R0. So if the demodulator
only provides the sign instead of the continuous-valued signal, then this loss of
information has to be compensated for by increasing the transmit power by 2
dB. Of course, the distance of 3 dB for the asymptotic coding gain according to
(1.7.13) only occurs as Ec/N0 →∞ and only in reference to Pw.

Additionally, in Figure 3.3, R0 is shown in the case of octal quantization as in
Figures 1.6 and 1.7. It can be seen that in reference to R0 the 3-bit quantization
only causes a very small loss of information and is almost as good as ideal soft
decisions. �

3.3 Capacity Limits and Coding Gains for the

Binary AWGN Channel

For the AWGN channel with baseband signaling and binary input, the channel
capacity C and the cutoff rate R0 have already been calculated in Examples
3.2(2) and 3.4(2) and are shown in Figure 3.3. In Subsection 3.3.1, we analyze
the relation between Eb/N0 and the code rate R for R = C or R = R0, assuming
the error probability is arbitrarily close to zero. However, if we allow a certain
value of the error probability, then we obtain a larger coding gain as examined
in Subsection 3.3.2.
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3.3.1 The Coding Gain as a Function of the Code Rate

In the following, we will derive a relation between the code rate R and the
required Eb/N0 for R = R0 and R = C for both soft and hard decisions, respec-
tively. The result is four curves with Eb/N0 as a function of R, shown in Figure
3.6. In all cases Eb/N0 → ∞ as R → 1. Particularly the limits for R → 0 are
of great interest. For the relation between the energy per encoded bit and the
energy per information bit, we generally have Ec = REb according to (1.7.3).
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Figure 3.6. Required Eb/N0 to achieve R = R0 or R = C for the AWGN channel
with binary input (solid lines) and non-binary input (dashdotted lines)

Case 1. First R = R0 is assumed to be the maximum possible code rate in
practice. For soft decisions, according to (3.2.16),

R = R0 = 1− log2
(
1 + e−R·Eb/N0

)
. (3.3.1)

This equation relates R to Eb/N0 with the solution

Eb

N0

= − ln(21−R − 1)

R
. (3.3.2)
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The resulting curve labeled R0,soft is shown in Figure 3.6. As R → 1, Eb/N0 →
∞. As R → 0, (3.3.1) only provides a trivial statement. In (3.3.2) the quotient
has the form 0/0, thus we can apply l’Hôspital’s rule (A.1.3):

lim
R→0

Eb

N0
= lim

R→0
−

1

21−R − 1
· 21−R ln(2) · (−1)

1

= 2 · ln 2 ∼= 1.42 dB (curve R0,soft). (3.3.3)

This limit can also be taken from Figure 3.6. As a conclusion, for Eb/N0 smaller
than 1.42 dB a transmission with R = R0 is impossible. An explanation could
be given as follows: a very low code rate R requires a very large bandwidth (this
is quite unrealistic) and therefore there is very little energy per encoded bit in
contrast to the noise power spectral density. Then every single encoded bit is
mostly superimposed by noise, and R0 is very low. After a certain limit, R0 is
lower than R so that R = R0 can no longer be achieved.

Case 2. The curve R0,hard in Figure 3.6 corresponds to hard decisions with
binary quantization and is obtained according to (3.2.14) by

R = R0 = 1− log2

(
1 +
√

4pe(1− pe)
)

with pe = Q

(√
2REb

N0

)
. (3.3.4)

The distance between soft and hard decisions for R = R0 is about 2 dB through-
out the whole range as shown in Figure 3.3. This again emphasizes the mean-
ing of soft-decision demodulation. As R → 0, (A.4.23) at first implies that
2pe ≈ 1−√4REb/(πN0) and 2(1− pe) ≈ 1 +

√
4REb/(πN0), thus

R = R0 ≈ 1− log2


1 +

√√√√(1−√4REb

πN0

)(
1 +

√
4REb

πN0

)
= 1− log2

(
1 +

√
1− 4REb

πN0

)

≈ 1− log2

(
2− 2REb

πN0

)
according to (A.1.8)

≈ R

π ln 2
· Eb

N0

according to (A.1.6).

Therefore

lim
R→0

Eb

N0

= π ln 2 ∼= 3.38 dB (curve R0,hard). (3.3.5)

Case 3. Next, R = C is presupposed as the theoretically maximum possible
code rate. The capacity for soft decisions is the same as in (3.1.20) with v =√

2REb/N0. The resulting curve is labeled Csoft in Figure 3.6. The calculation of
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the limit as R → 0 is fairly time-consuming, since using linear approximations
would be too inaccurate. The integral in (3.1.20) is at first written as C =∫
f(α, v)dα. As R = C → 0,

1 = lim
R→0

1

R

∞∫
−∞

f(α, v)dα

= lim
R→0

d

dR

∞∫
−∞

f(α, v)dα with (A.1.3)

= lim
v→0

Eb

N0
·

∞∫
−∞

d
dv
f(α, v)

v
dα since

dv

dR
=

Eb

N0

1

v
.

A lengthy calculation leads to the Shannon limit

lim
R→0

Eb

N0
= ln 2 ∼= −1.59 dB (curve Csoft), (3.3.6)

i.e., for Eb/N0 smaller than −1.59 dB a transmission with R = C is not possible.
Case 4. The curve Chard in Figure 3.6 corresponds to hard decisions with

binary quantization and is taken from (3.1.18):

R = C = 1−H2(pe) (3.3.7)

= 1 + pe log2 pe + (1− pe) log2(1− pe) with pe = Q

(√
2REb

N0

)
.

For the limit as R→ 0,

R = C = 1−H2

(
Q

(√
2R

Eb

N0

))

≈ 1−H2

(
1

2
−
√

REb

πN0

)
according to (A.4.23)

≈ 2

ln 2
· REb

πN0

according to (A.2.5).

Thus

lim
R→0

Eb

N0
=

π ln 2

2
≈ 1.09 ∼= 0.37 dB (curve Chard). (3.3.8)

The distance between Csoft and Chard does not remain more or less constant, as
it does for the corresponding R0 curves, but decreases from about 2 dB at R = 0
to about 1 dB at R = 1. As R → 1, the curves Chard and R0,soft draw closer
together.

However, the most important implication of Figure 3.6 is that it hardly
makes sense to use code rates lower than 1/2 in practice, since the gain of the
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transition from R = 1/2 to R → 0 is only a maximum of about 1 dB in reference
to R0. However, recall that these observations are based on the presumption of
limited transmit power and unlimited bandwidth.

The fifth graph in Figure 3.6 labeled CGauss−in refers to the AWGN channel
with non-binary input. We will see in Subsection 3.4.1 that the optimum for
non-binary inputs is given by a continuous-valued input signal with Gaussian
distribution. The exact details will be defined in Theorem 3.4.

Example 3.5. For a bit-error probability of Pb = 10−5 without coding, a chan-
nel with Eb/N0 = 9.59 dB is required according to Table 1.1. If a rate-1/2 code
is used, then for R = R0 an arbitrarily low error rate can be achieved for 2.45
dB, and as R → C further 2 dB can be saved. Thus the coding gain is 7.14 dB
at Pb = 10−5. The coding gain can be increased by a lower code rate R (or by
lower error rates). However, in practice these coding gains can only be achieved
by using very complex codes. �

3.3.2 The Coding Gain as a Function of the Bit-Error
Rate

When we derived the coding gains in the previous subsections, we assumed a
required error probability arbitrarily close to zero. If we are willing to tolerate a
certain given value of the error probability, we can obtain a larger coding gain as
shown in Figure 3.7. It follows from Shannon’s rate distortion theory [4, 19, 27],
that if we tolerate an error rate Pb, then a k-tuple of source bits can be shortened
to a k′-tuple

k′ = k · (1−H2(Pb)) = 1 + Pb log2 Pb + (1− Pb) log2(1− Pb), (3.3.9)

whereH2(Pb) denotes the binary entropy function and recalling that 1−H2(Pb) =
Chard(Pb) according to (3.1.18). First, the k source bits are compressed to k′

bits and are then expanded to n encoded bits with error-control coding. So for
R = k/n and R′ = k′/n,

R · (1−H2(Pb)) = R′ = Csoft

(
at

Ec

N0
= R′ · Eb

N0

)
. (3.3.10)

So Pb and R lead to Eb/N0 being

Eb

N0
=

C−1
soft(R(1−H2(Pb))

R(1−H2(Pb))
. (3.3.11)

In Figure 3.7, these coding limits are illustrated for some values of R by a graph
of Pb over Eb/N0. A similar plot of graphs can be found in [157]. For small Pb,
the graphs are almost vertical and the value of Eb/N0 in Figure 3.7 is equal to
the values of the curve Csoft in Figure 3.6. So Figure 3.7 only yields additional
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Figure 3.7. Required Eb/N0 to achieve a bit-error rate Pb under the condition of
R = Csoft for the AWGN channel with binary input

information above Pb > 0.001. The Shannon limit (3.3.6) can be found at
R = 0.01.

The maximum possible coding gain (presupposing R = Csoft, i.e. for ex-
tremely high coding complexity) for a particular given bit-error rate is the hori-
zontal gap to the uncoded BPSK curve. For example, according to Figure 10.10,
a rate-1/2 convolutional code with m = 6 (we refer to Chapters 9 and 10 for
details) requires Eb/N0 = 1.6 dB for a bit-error rate of 0.01, whereas according
to Figure 3.7, −0.4 dB would suffice (however, requiring the aforementioned,
enormous effort), so the gap to the theoretical Shannon boundary is 2 dB.

3.4 C and R0 for AWGN Channels with

High-Level Modulation

So far we have only considered the discrete-time AWGN channel with baseband
signaling and binary input Amod = {+√Ec,−

√
Ec}, so a very simple modu-

lation system with only two different signals was presupposed. Now, we will
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ignore this restriction to be able to use the waveform channel in the best pos-
sible way. In the following subsections, we consider the AWGN channel with
continuous-valued Gaussian-distributed input (as the theoretical optimum) as
well as with ASK-, PSK- and QAM-distributed input (as the most important
practical modulation schemes), where the output is always assumed with soft
decisions. Occasionally, we have to take into account the differences between
baseband and passband AWGN channels. In Section 3.5 we will extend the
AWGN channel to a continuous-time model.

3.4.1 Gaussian-Distributed Continuous-Valued Input

Before considering high-level modulation schemes in the following subsections
and comparing these to the binary modulation used so far, we will first consider
the extreme case of the modulation alphabet comprising the whole set of real
numbers, Amod = R, thus M =∞ formally. This means that continuous-valued
input signals to the inner discrete-time channel will be considered, the objective
being the joint optimization of coding and modulation, i.e., the optimization
of the whole transmitter and receiver in Figure 1.1. This will enable us to
determine by how much a high-level modulation scheme deviates from the best
case of an extremely high-level modulation with an optimum a priori probability
distribution of the individual symbol levels.

Furthermore, we will presume the discrete-time baseband AWGN channel as
given in Definition 1.3, however, this time with continuous-valued input x. For
an arbitrary input x the output y = x + ν is always continuous-valued because
of the continuous-valued noise ν. For the transition from the discrete-valued to
the continuous-valued system the channel capacity is still defined as

C = max
Px

(
H(y)−H(y|x)

)
, (3.4.1)

where the differential entropy of a continuous-valued random variable y with
the probability density function fy is defined as

H(y) = −
∞∫

−∞

fy(η) · log2 fy(η) dη. (3.4.2)

However, H(y) can not be interpreted as in the case of discrete values, since a
continuous-valued random variable attains infinitely many values and therefore
might have an infinite entropy. The function H(y) may even attain negative
values. Yet, C can be defined as in (3.4.1), see [19] for a more detailed discussion.
We will not prove that the maximum of the channel capacity is achieved by a
Gaussian distributed input x. Recall that according to Subsection 1.6.1 for a
q-ary discrete-valued input a uniform distribution was presupposed.

Since the input x and the noise ν are both Gaussian distributed then so is
the output y = x + ν, thus an analytically closed calculation of C is possible.
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The expected values of x, ν and y are all zero. The parameter Es = E(x2) = σ2
x

represents the energy per encoded modulation symbol. The variance of y = x+ ν
is

σ2
y = E(y2) = E(x2) + E(ν2) = Es +N0/2,

since the transmit signal and the noise are statistically independent. Therefore
the entropy of y is

H(y) =−
∞∫

−∞

1√
2πσ2

y

exp

(
− η2

2σ2
y

)
· log2

(
1√
2πσ2

y

exp

(
− η2

2σ2
y

))
dη

=− log2

(
1√
2πσ2

y

)
·

∞∫
−∞

1√
2πσ2

y

exp

(
− η2

2σ2
y

)
dη

− log2(e) ·
(
− 1

2σ2
y

)
·

∞∫
−∞

η2√
2πσ2

y

exp

(
− η2

2σ2
y

)
dη.

The first part of the integral covers the probability density function and delivers
the value 1. The second integral gives us the variance σ2

y, thus

H(y) = − log2

(
1√
2πσ2

y

)
+

1

2
log2(e) =

1

2
log2(2πeσ

2
y),

and therefore

H(y|x) = 1

2
log2

(
2πe

N0

2

)
.

The channel capacity is the difference H(y)−H(y|x) = 1

2
log2

(
2σ2

y

N0

)
and thus

we have proved the following theorem on the channel capacity:

Theorem 3.4. For the discrete-time baseband AWGN channel with Gaussian-
distributed continuous-valued input, the channel capacity is

C1−dim =
1

2
· log2

(
1 +

2Es

N0

)
=

1

2
· log2

(
1 +

E(x2)

E(ν2)

)
(3.4.3)

in units of information bits per discrete channel use. For the transition from
the baseband to the passband AWGN channel both the noise power, according to
(2.2.28), as well as the capacity are doubled:

C2−dim

(
Es

N0

)
= 2 · C1−dim

(
Es

2N0

)
= log2

(
1 +

Es

N0

)
. (3.4.4)
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The capacity bounds from Theorem 3.4 are sketched in Figures 3.7 and 3.9.
As in Section 3.3, we will again consider the case of RM = C as the theoretically
maximum possible code rate. Instead of Ec = REb, we will use Es = RM · Eb.
Theorem 3.4 implies that

RM =
1

2
log2

(
1 + 2RM

Eb

N0

)
, or

Eb

N0

=
22RM − 1

2RM

(3.4.5)

for baseband channels, and

RM = log2

(
1 +RM

Eb

N0

)
, or

Eb

N0

=
2RM − 1

RM

(3.4.6)

for passband channels. If RM = 1, then Eb/N0 = 1.76 dB (baseband) and
Eb/N0 = 0 dB (passband), and if RM is higher, Eb/N0 also becomes higher. As
RM → 0, according to (A.1.3),

lim
RM→0

Eb

N0
= lim

RM→0

22RM · ln(2) · 2
2

= ln 2 ∼= −1.59 dB. (3.4.7)

This Shannon limit applies both for baseband and passband channels with
continuous-valued input and, furthermore, is identical to the case of binary in-
put (3.3.6). The explanation for the existence of such a limit is similar to that
for the curves in Figure 2.4.

Example 3.6. According to Theorem 3.4, for Es/N0 = −5 dB the channel
capacity is C = 1

2
log2(1 + 2 · 0.316) ≈ 0.35 information bit per modulation

symbol. Coding with RM = 0.3 information bit per modulation symbol makes an
almost error-free transmission possible. However, then Eb/N0 = Es/(RMN0) =
0.316/0.3 ∼= 0.2 dB, but this value lies above the Shannon limit. For Eb/N0 <
−1.59 dB there is no RM such that for Es/N0 = RMEb/N0 we obtain a channel
with a capacity of C > RM . �

The cutoff rate R0 can also be generalized to a continuous-valued Gaussian
distributed input alphabet. To obtain mathematically and physically significant
results a restriction of the maximum energy per symbol is introduced. For more
details and a derivation we refer to [42, 219]. For baseband signaling, with the
abbreviation v = Es/N0,

R0,1−dim =
1 + v −√

1 + v2

2 ln 2
+

log2
(
1 +

√
1 + v2

)− 1

2
. (3.4.8)

Similarly as in Theorem 3.4, the transition to passband signaling, gives the
following result with the abbreviation v = Es/(2N0),

R0,2−dim =
1 + v −√

1 + v2

ln 2
+ log2

(
1 +

√
1 + v2

)
− 1. (3.4.9)

These theoretical R0 limits are shown in Figures 3.10 and 3.12.
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3.4.2 The Coding Gain as a Function of the Bit-Error

Rate
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Figure 3.8. Required Eb/N0 to achieve a bit-error rate Pb under the condition of
R = CGauss−in for the AWGN channel with non-binary input

The heading to this subsection is identical to that of Subsection 3.2.2, and
in both subsections we consider the relationship between the bit-error rate Pb

after decoding and the compulsory Eb/N0 on the condition that R = Csoft for
the AWGN channel. The only difference is that now we consider the AWGN
channel with Gaussian input instead of binary input. For the output we presume
soft decisions in both cases.

Similar to Subsection 3.3.2, according to (3.4.5),

R′
M = RM · (1−H2(Pb)) = CGauss−in

(
at

Es

N0
= R′

M · Eb

N0

)

=
1

2
log2

(
1 + 2R′

M

Eb

N0

)
(3.4.10)
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for the baseband AWGN channel and therefore

Eb

N0
=

22R
′
M (1−H2(Pb))

2R′
M

. (3.4.11)

In Figure 3.8, these coding limits are illustrated for some values of RM by a graph
of Pb over Eb/N0 (again we use the term RM instead of R′

M ). Of course, values of
RM greater than 1 are possible. As in Figure 3.7, the graphs are almost vertical
for small Pb and the value of Eb/N0 in Figure 3.8 is equal to the values of the
curve CGauss−in in Figure 3.6. So Figure 3.8 only yields additional information
above Pb > 0.001. The Shannon limit (3.3.6) can be found at R = 0.01 again.

The comparison of Figures 3.7 (binary input) and 3.8 (Gaussian input) as
well as the comparison of CGauss−in with Csoft in Figure 3.6 show that the transi-
tion from binary to non-binary input signals is only advantageous for code rates
greater than about 1/2.

Table 3.1. Overview of capacities for the AWGN channel

Parameter Input Output
Chard binary (M = 1) binary
Csoft binary (M = 1) soft
CGauss−in Gaussian (M =∞) soft
CASK, CPSK, CQAM 2M -ary modulated soft

To be able to keep track of the channel capacities used here, Table 3.1 gives
an overview of all channel capacities mentioned so far as well as those to come
for the AWGN channel. All these capacities are given in units of information
bits per symbol (i.e., per channel use), whereas C∗ denotes the channel capacity
in units of information bits per second.

3.4.3 Amplitude Shift Keying (ASK)

In practice a Gaussian distributed input is of course unrealistic, not only because
this would require unlimited peak values. Therefore in the following we will
consider the AWGN channel with 2M -ary input where the 2M amplitudes ξi ∈
Amod in the modulation alphabet are equidistant and occur with the same a
priori probabilities Px(ξi) = 2−M . In this subsection on baseband signaling we
consider 2M -ASK (Amplitude Shift Keying) as the modulation scheme with the
input alphabet (2.3.3). Even without optimization of the input distribution
Px as required in Definition 3.2, the mutual information is still called channel
capacity for a uniform input distribution. According to (3.1.10), the channel
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capacity for 2M -ASK can be written as

C2M−ASK =
∑
i

∞∫
−∞

1

2M
fy|x(η|ξi) log2

fy|x(η|ξi)
2−M
∑

l fy|x(η|ξl)
dη

= M − 1

2M
√
πN0

∑
i

∞∫
−∞

e−(η−ξi)
2/N0 log2

(∑
l

e−(η−ξl)
2/N0+(η−ξi)

2/N0

)
dη.

With the substitution u = η
√

2/N0 and the abbreviation ai = ξi
√

2/N0 we
obtain

C2M−ASK = M − 1

2M
√
2π

∑
i

∞∫
−∞

e−(u−ai)
2/2 log2

(∑
l

e−(u−al)
2/2+(u−ai)

2/2

)
du

= M − 1

2M
√
2π

∑
i

∞∫
−∞

e−u
2/2 log2

(∑
l

e−(ai−al)
2/2−u(ai−al)

)
du.

(3.4.12)

This integral can only be numerically evaluated as in the binary case. The
resulting curves are shown in Figure 3.7. The curve of 2-ASK is identical to the
curve Csoft in Figure 3.3 and to C in (3.1.20). The curve CGauss−In = log2(1 +
2Es/N0)/2 is obtained according to (3.4.3). Obviously,

C2M−ASK ≈
{

M for large Es/N0

CGauss−In for small Es/N0

}
. (3.4.13)

The large dots in Figures 3.7 and 3.8 refer to uncoded transmission with a
symbol-error rate of Ps = 10−5 (see for example [114, 112] or Section 2.4 for
the calculation of Ps). For 4-ASK and Es/N0 = 16.8 dB, Ps = 10−5 for the
uncoded transmission and C4−ASK = 2. So, coding with a code rate of RM = 2
information bit per modulation symbol could at least theoretically make an
arbitrarily small error probability possible.

If the modulation scheme is changed from 4-ASK to 8-ASK, then C8−ASK = 2
already for Es/N0 = 9.6 dB, hence we obtain a coding gain of 7.2 dB as shown
in Figure 2.5. But for a coding gain of only 4 dB, i.e., for Es/N0 = 12.8 dB,
C8−ASK = 2.455 is clearly larger than RM = 2, so coding can enable a very small
error probability in practice. If 16-ASK is used, then C16−ASK = 2 at Es/N0 =
9.5 dB in contrast to C8−ASK = 2 at Es/N0 = 9.6 dB, therefore the coding gain
increases for the transition from 8-ASK to 16-ASK by only 0.1 dB.

Thus a doubling of the alphabet is more than sufficient. This result forms
the basis of trellis coded modulation (TCM), introduced in Chapter 10, where
the error-control coding scheme and the higher-level modulation scheme are
jointly optimized. Even if a continuous-valued Gaussian distributed input is
considered, instead of a doubling of the alphabet, then according to Figure 3.7
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Figure 3.9. Channel capacity C of ASK for the AWGN channel with soft decisions

the additional gain is less than 1 dB. For RM = 2 and 8-ASK the code rate,
according to (1.4.3) or (2.6.1), is

R =
RM

M
=

2

3

[
info symbol

encoded symbol
=

info bit/modulation symbol
encoded bit/modulation symbol

]
.

The capacity curves in Figure 3.7 are compared to the corresponding cutoff
rate curves in Figure 3.8. The boundary curves CGauss−In, as in (3.4.3), are
identical in Figures 3.7 and 3.8. The boundary curve R0,Gauss−In, as in (3.4.6),
is shown in Figure 3.8.

According to (3.2.9), for 2M -ary ASK,

R0,2M−ASK = − log2

∞∫
−∞

(∑
i

1

2M

√
1√
πN0

e−(η−ξi)2/N0

)2

dη

= − log2
1

4M
√
πN0

∞∫
−∞

∑
i,l

e−(η−ξi)2/2N0−(η−ξl)
2/2N0dη
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Figure 3.10. Cutoff rate R0 of ASK for the AWGN channel with soft decisions

= − log2
1

4M
√
πN0

∞∫
−∞

∑
i,l

e−(η−(ξi+ξl)/2)
2/N0e−(ξi−ξl)

2/4N0dη

= − log2
1

4M

∑
i,l

exp

(
−(i− l)2

3

4(4M − 1)

Es

N0

)
(3.4.14)

= − log2
1

4M


2M + 2

2M−1∑
v=1

(2M − v) exp

(
−v2

3

4M − 1

Es

N0

) .

(3.4.15)

The R0-curves in Figure 3.8 show the same behaviour as the C-curves in Figure
3.7, only with a shift of 1.5 to 2 dB. The coding gains are smaller accordingly.
Again an increase of M by 1 proves to be sufficient. The curve R0,2−ASK is
identical to the curve R0,soft in Figure 2.2.
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3.4.4 Phase Shift Keying (PSK) and Quadrature

Amplitude Modulation (QAM)

In this subsection we consider PSK and QAM as the most important pass-
band modulation schemes. Their complex-valued modulation alphabets Amod

are defined in (2.3.5) and (2.3.7). The channel output can also be interpreted
as a complex number y = yI + jyQ ∈ C as described in Section 2.1. The 2-
dimensional Gaussian probability density function (PDF) is given in (2.1.6) or
in the more compact form

fy|x(η|ξi) = 1

2πσ2
· exp

(
−|η − ξi|2

2σ2

)
(3.4.16)

with |η − ξi|2 = (ηI − ξi,I)
2 + (ηQ − ξi,Q)

2 and 2σ2 = N0. The 2-dimensional
Gaussian PDF is sketched in Figure 2.1 and a comprehensive discussion of the
multi-dimensional Gaussian distribution can be found in Subsection A.4.3.

The channel capacity C for arbitrary 2-dimensional signal constellations
Amod = {ξi | i = 0, . . . , 2M − 1} can be calculated from equation (3.1.10) as
follows:

C =

∞∫
−∞

∑
i

1

2M
fy|x(η|ξi) · log2

fy|x(η|ξi)
2−M
∑

l fy|x(η|ξl)
dη

= − 1

2M

∞∫
−∞

∑
i

f0(η − ξi) · log2
∑

l exp(−|η − ξl|2/N0)

2M · exp(−|η − ξi|2/N0)
dη

= − 1

2M

∞∫
−∞

f0(η)
∑
i

log2

(
2−M
∑
l

exp

(
−|η + ξi − ξl|2 − |η|2

N0

))
︸ ︷︷ ︸

= g(η)

dη, (3.4.17)

where f0(η) = exp(−|η|2/N0)/(πN0) is the probability density function of the
N(0 , σ2I2) 2-dimensional Gaussian distribution. The 2-dimensional integral in
(3.4.13) can not be analytically calculated and the numerical integration is also
very difficult. An easier evaluation can be performed by using the Monte-Carlo
technique [225], for this (3.4.13) is interpreted as the mean of the random variable
g(y), where y is Gaussian distributed with y ∼ N(0, σ2I2). This is equivalent
to y = (yI , yQ) with the two statistically independent random variables yI , yQ ∼
N(0, σ2). The mean is approximated by N random samples ηn with the PDF
f0 as follows:

C = E(g(η)) =

∞∫
−∞

f0(η) · g(η) dη ≈ 1

N

N∑
n=1

g(ηn). (3.4.18)

The curves in Figure 3.9 were calculated with N = 1000 samples and 80 points
per curve.
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Figure 3.11. Channel capacity C of PSK and QAM for the AWGN channel with
soft decisions

Obviously QAM is much closer to the theoretical limit than PSK, as can be
seen from the comparison of 16-QAM to 16-PSK in the range of 5 to 20 dB.
The large deviation of PSK from the capacity boundary, compared to QAM
or compared to the 1-dimensional ASK, can be easily explained by the signal
constellations: PSK with uniform distributed signal points on a circle deviates
even more from the optimum Gaussian distribution over the complex plane than
QAM with uniform distributed signal points within a square.

The effects of doubling the size of the symbol alphabet for PSK and QAM
are identical to those for ASK.

For completeness, the cutoff rate R0 for PSK is given in Figure 3.10 although
we do not obtain any profoundly new results. For 2M -PSK with the signal
alphabet (2.3.5) and 2σ2 = N0 according to (3.2.9)

R0,2M−PSK = − log2

∞∫
−∞

(∑
i

1

2M

√
1

πN0

e−|η−ξi|2/N0

)2

dη
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= − log2
1

4MπN0

∞∫
−∞

∑
i,l

exp

(
−|η − ξi|2 + |η − ξl|2

2N0

)
dη

= − log2
1

4MπN0

∑
i,l

exp

(
−2|ξi|2 + 2|ξl|2 − |ξi + ξl|2

4N0

)

·
∞∫

−∞

exp

(
−|η − (ξi + ξl)

∗/2|2
N0

)
dη

︸ ︷︷ ︸
=πN0

= − log2
1

4M2

∑
i,l

exp

(
− Es

N0

(
1− 1

4

∣∣∣ej2πξi/2M

+ ej2πξl/2
M
∣∣∣2︸ ︷︷ ︸

=2+2 cos(2π(i−l)/2M )

))

= − log2
1

4M

∑
i,l

exp

(
− Es

2N0
(1− cos(2π(i− l)/2M))

)

= − log2
1

2M

2M−1∑
v=0

exp

(
− Es

2N0

(1− cos(2πv/2M))

)

= − log2
1

2M

2M−1∑
v=0

exp

(
−Es

N0
sin2(πv/2M))

)
. (3.4.19)

Further curves of C and R0 for PSK and QAM can be found for example in
[19, 186, 225].

3.5 Band-Limited AWGN Channels

So far we only assumed the transmit power to be limited. The code rates were
in no way restricted, in other words the AWGN channel was assumed to be
useable as often as necessary and therefore to have unrestricted bandwidth.
Many applications require an efficient use of the available spectrum. Therefore
we will now presuppose a continuous-time AWGN channel with the bandwidth
W , i.e., the channel is limited to frequencies f with

|f | < W (baseband) and | ± fc − f | < W/2 (passband). (3.5.1)

As discussed in Subsection 2.2.2, we further assume W as the minimum Nyquist
bandwidth with a rolloff factor of α = 0. According to (2.2.19) or (2.6.3), the
maximum symbol rate (baud rate) is limited to

rs = 2W (baseband) and rs = W (passband) (3.5.2)

modulation symbols per second, given that no degradations due to intersymbol
interferences are permitted.
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Figure 3.12. Cutoff rate R0 of PSK for the AWGN channel with soft decisions

3.5.1 The Shannon-Hartley Theorem

The capacity of the continuous-time AWGN channel with a continuous-valued
input as in Subsection 3.4.1 can be derived from Theorem 3.4 for the discrete-
time channel. With (2.6.8),

C =




1

2
· log2

(
1 +

S

N

)
baseband channel

log2

(
1 +

S

N

)
passband channel


 (3.5.3)

information bits per discrete channel symbol can be transmitted. So a maximum
of C∗

1−dim = 2W ·C1−dim or C∗
2−dim = W ·C2−dim information bits per second can

be transmitted. The form C∗ of the channel capacity was already introduced in
(3.2.3) and again we emphasize the important difference that C refers to symbols
and C∗ to seconds.

Thus we have proved the following Shannon-Hartley Theorem for the ca-
pacity of a bandwidth-limited AWGN channel for an optimally distributed, i.e.,
Gaussian distributed, input signal. The right-hand side of the formula in the
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Theorem follows from S = Eb·rb and N = N0·W according to (2.6.6) and (2.6.7),
respectively. Recall that rb denotes the throughput in units of information bit
per second.

Theorem 3.5 (Shannon-Hartley). For the baseband and passband band-
limited AWGN channel with continuous-valued input the capacity is

C∗ = W · log2
(
1 +

S

N

)
= W · log2

(
1 +

Eb

N0

· rb
W

)
(3.5.4)

in units of information bit per second. For rb < C∗ an almost error-free trans-
mission is possible with very high effort. The parameters S/N and W set an
elementary bound for the throughput, but not for the quality of the transmission.

Of particular importance is that the three key parameters of digital com-
munications, the channel bandwidth W , the signal-to-noise ratio S/N or Eb/N0

and the throughput rb, can be summarized in one single formula. Obviously, an
exchange between the bandwidth and the signal-to-noise ratio is possible, for
example, a small S/N can be compensated for by a larger W . However, there
is a fundamental restriction, since Eb/N0 → 0 can not be compensated for by
W →∞, as can be easily seen:

lim
W→∞

C∗ = lim
W→∞

W · log2
(
1 +

S

N0 ·W
)

= lim
W→∞

log2

((
1 +

S

N0 ·W
)W)

= log2 exp

(
S

N0

)

=
1

ln 2
· S

N0
= 1.44 · rb · Eb

N0
. (3.5.5)

Since rb < C∗, the implication is the Shannon limit for Eb/N0 again, which can
not be violated for a reliable transmission:

Eb

N0
> ln 2 ∼= −1.59 dB. (3.5.6)

Once more we note that this is only a theoretical bound, which can not be
reached in practice, since (i) the code rate must converge to zero or equivalently
the bandwidth must approach infinity, (ii) the input of the channel must be
continuous-valued and Gaussian distributed and (iii) the block length and the
complexity of the code must exceed each bound.

Of course, there is no lower bound for S/N . Obviously, W → 0 implies that
C∗ → 0, hence it is trivial that there can not be a transmission without any
bandwidth. A noise-free channel is physically impossible, but mathematically
for N0 = 0 the channel capacity is infinite.
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Example 3.7. We consider some applications of the Shannon-Hartley Theo-
rem.

(1) For the standard voice-band telephone channel (in the passband domain)
over switched lines the bandwidth is typically W = 3000 Hz and the signal-to-
noise ratio is S/N = 30 dB. Thus the capacity is

C∗ = 3000 · log2(1 + 1000) ≈ 29.9 kbit/s.

Under different conditions the channel capacity can also be larger or smaller.
However, the telephone channel is not a pure AWGN channel, since in addition
to the noise other deteriorations and imperfections also have to be considered.
Since 1994 modems with up to 28.8 kbit/s according to the ITU-T standard
V.34, have been introduced to the market. This was later improved to 33.6
kbit/s with the standard V.34bis. An overview of modem technology can be
found in Section 16.2?.

(2)We will now compare baseband 2-PSK and passband 4-PSK, presuppos-
ing a bit-error rate of 10−8. For uncoded 2-PSK, about Eb/N0 = Es/N0 = 12.0
dB are required according to Table 1.1, Figure 2.10 or Figure 2.11. For un-
coded 4-PSK about Es/N0 = 15.0 dB are required according to Figure 2.10,
and Eb/N0 = 12.0 dB according to Figure 2.11. In each case, S/N = 15.0 dB
according to (2.6.9). A bandwidth of W = 4000 Hz allows a maximum baud
rate of rs = 8000 symbol/s for 2-PSK and rs = 4000 symbol/s for 4-PSK, ac-
cording to (2.6.3). In each case, rb = 8000 bit/s for the throughput. According
to Theorem 3.5,

C∗ = 4000 · log2(1 + 1015/10) ≈ 20.1 kbit/s

for baseband as well as for passband signaling. Thus, in contrast to uncoded sig-
naling with a bit-error rate of 10−8, error-control coding can enable a throughput
that is about 2.5 times higher for arbitrarily small bit-error rate.

(3) Now, we consider baseband 256-ASK, again with W = 4000 Hz and rs =
8000 symbol/s. Obviously, rb = 64000 bit/s for uncoded signaling. According
to Figure 2.14, in contrast to binary modulation, high-level ASK requires an
additional asymptotic amount of 43.4 dB with respect to Es/N0. So all in all
about Es/N0 = 12.0 + 43.4 = 55.4 dB or S/N = 58.4 dB or Eb/N0 = 46.4 dB
are required. According to Theorem 3.5,

C∗ = 4000 · log2(1 + 1058.4/10) ≈ 77.6 kbit/s .

Here the difference between uncoded signaling with Pb = 10−8 and the channel
capacity is smaller than for (2). This effect will become even clearer with Figure
3.13, where the vertical (logarithmic) difference (in reference to the throughput)
between ASK or QAM and the capacity boundary decreases asM →∞, whereas
the horizontal gap (in reference to Eb/N0) remains almost the same.

However, the more important implication here is that such a high throughput
in combination with such a small bandwidth is only possible with extremely high
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signal-to-noise ratio. The constellation considered in this example is not just
theoretical but is similar to the situation for ITU-T V.90 modems (also known
as 56K modems), which have been widely-used for internet access since 1998.
However, this is only the case for the downstream direction from the internet
service provider (ISP) to the subscriber modem. Furthermore, the link from the
switching station to the modem, which is only a few kilometers long, should be
the only analog circuit in the whole connection, whereas the ISP is connected
via a digital line to the digital public switched telephone network (PSTN). The
V.90 standard is also discussed in detail in Section 16.2?. �

3.5.2 Spectral Efficiency and the Bandwidth-Efficiency

Diagram

Definition 3.5. The value rb/W is called the spectral efficiency or spectral bit
rate or bandwidth efficiency and

C∗

W
= log2

(
1 +

S

N

)
= log2

(
1 +

Eb

N0
· rb
W

)
(3.5.7)

is called the normalized channel capacity. Both rb/W and C∗/W are in units of
information bits per second per Hertz, i.e., simply in units of information bits.

The Shannon-Hartley Theorem presumes that rb/W < C∗/W . For the limit
case of rb = C∗, we have a relation between C∗/W and Eb/N0

C∗

W
= log2

(
1 +

Eb

N0
· C

∗

W

)
or

Eb

N0
=

2C
∗/W − 1

C∗/W
(3.5.8)

and once more the Shannon limit (3.5.4)

lim
C∗/W→0

Eb

N0
= ln 2 ∼= −1.59 dB, (3.5.9)

which applies both for baseband and passband signaling.

Figure 3.11 shows the normalized channel capacity C∗/W over Eb/N0 in
comparison to various digital modulation schemes without coding. Above the
capacity bound (rb > C∗) the error probability can never be brought below a
certain value. Below the channel capacity bound (rb < C∗) an almost error-free
transmission is possible with an appropriate effort. The modulation schemes
ASK (Amplitude Shift Keying), PSK (Phase Shift Keying), QAM (Quadrature
Amplitude Modulation) and FSK (Frequency Shift Keying see [57, 128, 151])
are meant to be without coding, with coherent demodulation (i.e., ideal carrier
and clock recovery) and refer to a symbol-error rate of 10−5 (see Figure 2.11 for
PSK and QAM). Modulation schemes of the same type are connected by lines
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Figure 3.13. Bandwidth-efficiency diagram
(uncoded modulation schemes at Ps = 10−5, ordinate logarithmically scaled)

in Figure 3.11. The spectral efficiency is

rb
W

=




2M 2M -ASK

M 2M -PSK, 2M -QAM

M/2M−1 2M -FSK (coherent)


 . (3.5.10)

According to (2.4.11) and (2.4.12), 2M -ASK and 22M -QAM have almost the
same bit-error rate for equal Eb/N0, thus ASK and QAM lie on a mutual curve
in Figure 3.13, which was obvious anyway.
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We insert also some remarks on FSK: The 2M tones are spaced at ∆f =
1/(2Ts) = rs/2 Hz for coherent FSK or at ∆f = 1/Ts = rs Hz for non-coherent
FSK. So the bandwidth is approximately W = 2M · ∆f . The result rb/W =
M/2M−1 (coherent) or rb/W = M/2M (non-coherent) follows from rb = Mrs.
For more details on FSK we refer to textbooks on digital communications, e.g.,
[128].

All modulation schemes in Figure 3.11 are about 10 dB away from the chan-
nel capacity bound in reference to Eb/N0. For a smaller error probability this
distance becomes even larger. Therefore error-control coding can lead to consid-
erable improvements of digital transmission systems, which actually justifies the
big efforts required in theory and implementation. Also, note that, as M →∞,
the vertical logarithmic gap between the capacity boundary and ASK and QAM
continuingly decreases.

In Figure 3.11 one can roughly distinguish between two main areas (which
are not exactly separated, but overlap):

Power-limited region (rb/W < 1) is characterized by a large or medium
bandwidth compared to the information bit rate. The minimum of Eb/N0 is
−1.59 dB given by the Shannon limit. FSK is a bandwidth-intensive mod-
ulation scheme where for higher levels the spectral efficiency as well as the
necessary Eb/N0 decrease. Smaller reductions of Eb/N0 require a consider-
ably larger bandwidth for FSK. For the classic channel coding with 2-ASK
or 4-PSK (Chapters 4 to 10) saving transmit power can be compensated for
by larger bandwidth and higher complexity. Deep-space satellite communi-
cation is one typical application (see Section 12.1).

Bandwidth-limited region (rb/W > 1) is characterized by a small or medium
bandwidth and a large Eb/N0. High-level modulation schemes, for example
QAM and PSK or a combination of both, are used. In contrast to FSK,
higher levels for QAM and PSK increase the spectral efficiency as well as
the necessary Eb/N0. For example, there are line-of-sight microwave radio
systems with 1024-QAM providing a spectral efficiency of 10 bit/sec/Hz.
However, a further improvement of the spectral efficiency causes an immense
increase of the required Eb/N0. For instance, an improvement of the spectral
efficiency from 2 to 10 bit/sec/Hz implies an increase of the required Eb/N0

from 1.76 dB to 20.10 dB, or in terms of Es/N0 = M · Eb/N0 from 4.77 dB
to 30.10 dB.

Error-control coding should not raise the required bandwidth for most
bandwidth-limited applications. As an attractive alternative to classic error-
control coding there are bandwidth-efficient coding schemes where channel
coding and modulation schemes are jointly optimized. An essential technique
is that the number of levels of the modulation scheme is increased while the
modulation symbol rate remains constant. These methods are known as
trellis coded modulation (TCM) and will be introduced in Chapter 10.
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Modems (see Section 16.2?) and line-of-sight microwave radio (see Section
16.5?) are typical applications of bandwidth-limited communication. For
mobile radio systems (see Sections 16.3? and 16.4?) both power- as well as
bandwidth-efficient transmission methods are required.

In summary, the designer of a coded communication system has the following
possibilities for exchanges between the most important parameters of digital
signaling, i.e., the signal-to-noise ratio Eb/N0, the spectral efficiency rb/W and
the symbol-error probability Ps:
• exchange between Ps and Eb/N0 for a constant rb/W .
• exchange between Ps and rb/W for a constant Eb/N0.
• exchange between rb/W and Eb/N0 for a constant Ps.
However, only the first exchange does not require a change of the modulation
scheme.

3.6 Appendix: Proof of Shannon’s Noisy

Channel Coding Theorem for the BSC

For the special case of the binary symmetric channel (BSC) with C = 1−H2(pe)
the channel coding Theorem 3.1 can be proved fairly easily, also the random
coding argument becomes quite clear.

Let pe < 0.5 and let ε > 0 and ε′ > 0 be arbitrary. We are to prove the
existence of an (n, k)2 code with

R =
k

n
≥ C − ε′ and Pw < ε. (3.6.1)

The decoding is performed with the maximum-likelihood (ML) rule or a worse
method. The proof is carried out in several steps:

Step 1. Since H2(pe) is a strict monotonic increasing function for pe < 0.5
(see Figure A.1), there exists a β > 0 with

H2(pe + β)−H2(pe) <
ε′

4
and β <

1

2
− pe. (3.6.2)

Then the block length n is chosen large enough such that

pe(1− pe)

nβ2
<

ε

2
and 2−nε

′/2 <
ε

2
(3.6.3)

and furthermore a threshold is defined as

t = n(pe + β). (3.6.4)

Step 2. Let an arbitrary (n, k)2 code be given as

C = {a1, . . . ,a2k} ⊆ {0, 1}n with C − ε′

2
> R ≥ C − ε′ (3.6.5)
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in an enumerating description, where codewords may be identical.

Step 3. We will now knowingly degrade the ML rule of decoding, to make
the proof easier. In reference to the defined threshold t, the received word y is
decoded as follows:

(a) decision for ai, if ai is the only codeword within a distance ≤ t of y , i.e.:
dH(y ,ai) ≤ t and dH(y ,aj) > t for all j with j �= i.

(b) no decision, if (a) is not fulfilled, i.e., either there is no codeword or there is
more than one codeword within a distance ≤ t of y .

In the case of (a), the ML rule is obviously fulfilled according to Theorem 1.3.
Since there is no decoding in the case of (b), the defined rule is worse than the
ML rule.

Step 4. Let Pw|i be the word-error probability assuming that ai was trans-
mitted, then

Pw|i = P (decoding error | ai transmitted)

= P (dH(y ,ai) > t or there exists j �= i with dH(y ,aj) ≤ t | ai)
≤ P (dH(y ,ai) > t | ai)︸ ︷︷ ︸

= P1|i

+P (there exists j �= i with dH(y ,aj) ≤ t | ai)︸ ︷︷ ︸
= P2|i

.

Step 5. The case of dH(y ,ai) > t means that at least t + 1 errors occur.
The number of errors dH(y ,ai) is binomially distributed, according to (1.3.9),
with the expected value npe and the variance npe(1− pe):

P1|i = P (dH(y ,ai) > t)

= P (dH(y ,ai)− npe > n(pe + β)− npe)

≤ P (|dH(y ,ai)− npe| > nβ)

≤ npe(1− pe)

n2β2
according to Theorem A.2

=
pe(1− pe)

nβ2

<
ε

2
according to (3.6.3).

So P1|i is independent of i and was also upper bounded independent of the
properties of the code.

Step 6. For P2|i the situation is more complicated:

P2|i = P (there exists j �= i with dH(y ,aj) ≤ t | ai)

≤
2k∑
j=1
j �=i

P (dH(y ,aj) ≤ t | ai) =
2k∑
j=1
j �=i

P (aj ∈ Kt(y) | ai).
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The set Kt(y) denotes the sphere of all words around y of radius t (see also
Definition 4.5). For the probability P2|i it is difficult to find an upper bound or
P2|i may also be very large. However, an upper bound for P2|i is easy to derive, if
the average over all randomly chosen codes is considered. Then aj is uniformly
distributed in {0, 1}n, i.e., for each arbitrary set M,

P (aj ∈M) = 2−n · |M|. (3.6.6)

The spheres of radius t contain

t∑
r=0

(
n

r

)
words, according to (4.2.3), thus

P2|i ≤
2k∑
j=1
j �=i

2−n|Kt(y)| ≤ 2k−n|Kt(y)| = 2k−n
t∑

r=0

(
n

r

)
. (3.6.7)

Let λ =
t

n
= pe + β. Because of (3.6.2), λ ≤ 1

2
and according to Theorem A.1,

P2|i ≤ 2k−n · 2nH2(λ)

= 2n(R−1+H2(λ))

≤ 2n(C−ε′/2−1+H2(pe+β)) according to (3.6.5)

= 2n(H2(pe+β)−H2(pe)−ε′/2)

≤ 2n(ε
′/4−ε′/2) according to (3.6.2)

= 2−nε
′/2

≤ ε

2
according to (3.6.3).

Step 7. In summary, the results of steps 5 and 6 imply that

Pw|i ≤ P1|i + P2|i ≤ ε

2
+

ε

2
= ε.

The rest is quite simple:

Pw =

2n∑
i=1

P (decoding error | ai transmitted)︸ ︷︷ ︸
= Pw|i ≤ ε

·P (ai transmitted)︸ ︷︷ ︸
= 2−n

≤ ε.

So this is valid for the average over all randomly chosen codes. Trivially, there
must be at least one code which is as good as the mean. The larger n is,
the stronger the code properties are concentrated around the expected value.
Therefore, as already mentioned in Subsection 3.2.1, almost all codes are good.
The converse theorem requires an independent proof, which we will leave out
here. �
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To help with the interpretation of the main ideas we review the proof. On
average the received word y contains npe errors. For large n this mean is ap-
proximately identical to the actual number of errors. A decoding only takes
place, if there is only one codeword in Kt(y). So there are two possible wrong
decodings:

P1|i: the transmitted codeword is not in Kt(y).

P2|i: a different codeword than the transmitted codeword is in Kt(y).

Depending on the choice of the threshold t = npe+nβ, two scenarios are possible:
• as t→ npe or as β → 0, (3.6.3) is not fulfilled. The sphere becomes so small

that the transmitted codeword is often outside of it, hence P1|i is large and
P2|i is small.

• for t ! npe or β ! 0, (3.6.2) is not fulfilled. The sphere becomes so large
that a wrong codeword is contained in it too often, hence P1|i is small and
P2|i is large.

The suitable choice of β for a fixed n (or for a given β ≈ 0 and an accordingly
large n) makes P1|i as well as P2|i small. The principle introduced in step 3 is
also called bounded-distance decoder (BDD). A comparison to the maximum-
likelihood method and a further decoding method will be given in Subsection
4.2.4.

A very simplified approach without the random coding argument also leads
to the channel capacity: on average the received word y contains npe errors. The
number of error patterns of weight npe is

(
n
npe

) ≈ 2nH2(pe) according to Theorem

A.1. Per channel input there are 2nH2(pe) outputs which are highly likely, and a
total of 2n possible outputs. For the number of inputs with different outputs,

2k =
2n

2nH2(pe)
= 2n(1−H2(pe)) = 2nC ,

thus R = k/n = C. A similar conclusion also leads to Theorem 3.4 for the
baseband AWGN channel. The received value y = x + ν has the variance
σ2
y = Es + N0/2, therefore E(‖y‖2) = nσ2

y , hence y ∈ K√
nσ2

y
(0 ) for random

x . Correspondingly, y ∈ K√
nN0/2

(0 ) for a given x . As for the BSC, the

implication is that

2k =
|K√

nσ2
y
(0 )|

|K√
nN0/2

(0 )| =
cn(nσ

2
y)

n/2

cn(nN0/2)n/2
=

(
1 + 2

Es

N0

)n/2
,

where cnt
n is the content of the n-dimensional sphere of radius t. Thus k =

n/2 · log2(1 + 2Es/N0) which is the statement of Theorem 3.4.
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3.7 Appendix: Proof of the R0 Theorem for

the DMC

The R0 Theorem 3.3 can be fairly easily proved for the general DMC, again by
using the random coding argument. However, the proof is quite different from
that of the channel coding theorem. With the same methods, as used here for
Theorem 3.3, we will later prove the union bound in Theorem 4.16. First we
will formulate a lemma:

Lemma 3.1. Let h(v, w) be an arbitrary function of the variables v ∈ A and
w ∈ B. Then for each w = (w0, . . . , wn−1) ∈ Bn,

∑
(v0,...,vn−1)∈An

n−1∏
r=0

h(vr, wr) =

n−1∏
r=0

∑
v∈A

h(v, wr). (3.7.1)

Proof. Obviously, the following is valid∑
v0∈A

· · ·
∑

vn−1∈A
h(v0, w0) · · ·h(vn−1, wn−1)

=

(∑
v0∈A

h(v0, w0)

)
· · ·

 ∑

vn−1∈A
h(vn−1, wn−1)


 .

The upper term corresponds to the left side and the lower term corresponds to
the right side of (3.7.1). �
Proof of Theorem 3.3 in several steps:

Step 1. Let C = {a1,a2} be an arbitrary code with 2 codewords, denoted
ai = (ai,0, . . . , ai,n−1) ∈ An

in. Maximum-likelihood (ML) decoding, according to
Theorem 1.2, leads to

P (y |a1) > P (y |a2) =⇒ â = a1

P (y |a1) < P (y |a2) =⇒ â = a2.

Then for Pi = P (decoding error | ai transmitted),

P1 = P
(
P (y |a1) < P (y |a2)

∣∣∣a1

)
=

∑
y∈An

out
P (y |a1)<P (y |a2)

P (y |a1)

≤
∑

y∈An
out

P (y |a1)<P (y |a2)

P (y |a1)

√
P (y |a2)

P (y |a1)
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≤
∑

y∈An
out

√
P (y |a1)P (y |a2)

=
∑

y∈An
out

n−1∏
r=0

√
P (yr|a1,r)P (yr|a2,r) with (1.3.2).

In Lemma 3.1, we set v = y ∈ Aout and w = (a1, a2) ∈ A2
in, then

P1 ≤
n−1∏
r=0

∑
y∈Aout

√
P (y|a1,r)P (y|a2,r)︸ ︷︷ ︸

= J(a1,r, a2,r)

.

Of course this result is also valid for P2.

Step 2. For the code consisting of 2 codewords,

Pw = P (decoding error)

= P1 · P (a1 transmitted) + P2 · P (a2 transmitted)

≤
n−1∏
r=0

J(a1,r, a2,r).

The code C = {a1,a2} is randomly chosen such that the total of 2n code symbols
are statistically independent with the distribution Px, which maximizes R0. For
the expected value of Pw,

Pw ≤
∑

(a1,a2)∈A2n
in

n−1∏
r=0

Px(a1,r)Px(a2,r)J(a1,r, a2,r).

In Lemma 3.1, we set v = (a1, a2) ∈ A2
in (w is omitted), then

Pw ≤
n−1∏
r=0

∑
(a1,a2)∈A2

in

Px(a1)Px(a2)J(a1, a2)

=


 ∑
(a1,a2)∈A2

in

Px(a1)Px(a2)J(a1, a2)


n

=


 ∑
y∈Aout

∑
(a1,a2)∈A2

in

Px(a1)Px(a2)
√

P (y|a1)P (y|a2)

n

=


 ∑
y∈Aout

(∑
a∈Ain

Px(a)
√

P (y|a)
)2

n = 2−nR0 with (3.2.9).
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Step 3. Let C = {a1, . . . ,aqk} be an arbitrary (n, k)q code with the code
rate Rq = k/n · log2 q, then

Pw =

qk∑
i=1

P (decoding error | ai transmitted) · P (ai transmitted)

≤
qk∑
i=1

P (ai transmitted) ·
qk∑
j=1
j �=i

P (decision for aj|ai transmitted)︸ ︷︷ ︸
≤ 2−nR0

≤
qk∑
i=1

P (ai transmitted) · (qk − 1) · 2−nR0

≤ qk · 2−nR0 = 2−n(R0−Rq).

So this is valid for the mean of all randomly chosen codes. Trivially, there must
be at least one code which is as good as the mean. �

3.8 Problems

3.1. Assume a BSC with the bit-error probability pe and a binary input with
the distribution described by P (x = 0) = α and P (x = 1) = 1 − α.
The output is denoted y. Calculate the entropies H(x), H(y), H(y|x),
the mutual information I(x; y) as well as the channel capacity C. Draw
I(x; y) as a function of α for various parameters pe.

3.2. Determine R0 for the erasure channel BEC (see (1.3.10)).

3.3. Determine the channel capacity for the binary DMC with the transition
probability

Py|x(η|ξ) =
{

pe η = 0
1− pe η = 1

}
.

3.4. Calculate the channel capacity for the binary channel with the transition
probability

Py|x(η|ξ) =



1 ξ = 0, η = 0
0 ξ = 0, η = 1
1/2 ξ = 1


 .

This model is called Z-channel since the diagram of the transition prob-
ability (as in Figure 1.3) looks like the letter Z.

3.5. For the q-ary symmetric DMC according to (1.3.3), prove that the chan-
nel capacity is C = log2 q −Hq(pe), where

Hq(pe) = pe log2(q − 1) +H2(pe)

denotes an extension of the binary entropy function.
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3.6. Prove for a binomially distributed random variable x with the distribu-
tion

P (x = l) =

(
n

l

)
ple(1− pe)

n−l , l = 0, . . . , n

the upper bound of the entropy H(x) ≤ nH2(pe).

3.7. Calculate the differential entropy of the two following distributions which
are represented by their probability density functions and interpret the
result:

fx(ξ) =

{
1/a 0 < ξ < a
0 otherwise

}
, fx(ξ) =

{
1/(ξ ln2 ξ) ξ > e
0 ξ < e

}
.

3.8. Over a BSC, 10000 encoded bits per second can be transmitted with an
error rate of 0.09. By using coding, can 4800 information bits per second
be transmitted with an error rate of 10−5? What is the situation for an
error rate of 10−12?

3.9. Assume a bit-error probability of Pb = 10−5. (1) How large is the maxi-
mum theoretically possible gain for a binary transmission over the power-
limited AWGN channel? (2) ... with a restriction to R = R0? (3) ...
with a restriction to R = R0 and 4-times bandwidth expansion?

3.10. Prove (similar as for Theorem 3.1) that the average number of codewords
in a sphere of radius t about an arbitrary word y is

qk−n · |Kt(y)| = qk−n ·
t∑

r=0

(
n

r

)
(q − 1)r.

How large is the average number of codewords on the surface of the
sphere?
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