
Chapter 2

Digital Passband Modulation
over AWGN Channels

The memoryless additive white Gaussian noise (AWGN) channel or simply
Gaussian channel is the most important model of a discrete channel, usually
used to calculate the performance of coding and modulation methods. Further
important models representing fading channels are also based on the Gaussian
channel and will be covered in Section ?.?.

Section 2.1 will introduce the 2-dimensional AWGN channel for passband
modulation as a generalization of the 1-dimensional AWGN channel for baseband
signaling discussed in Chapter 1. The basic principle of coherent communication
and the Nyquist rate as well as the link budget analysis will be discussed in
detail in Section 2.2. The most important 1- and 2-dimensional modulation
methods ASK (Amplitude Shift Keying), PSK (Phase Shift Keying) and QAM
(Quadrature Amplitude Modulation) will be described in Section 2.3, and in
Section 2.4 we will derive various bounds to calculate the error probability of
uncoded signaling. The performance of the modulation methods are compared
by considering the symbol-error rate over the signal-to-noise ratio. In particular
the asymptotic behaviour is discussed in Section 2.5.

In this book there are another two chapters based on the principles of un-
coded high-level modulation schemes; in Chapter 3 we will determine the chan-
nel capacity of ASK, PSK and QAM over the AWGN channel, and in Chapter
11 we will consider a joint optimization of error-control codes and high-level
modulation schemes which is known as trellis coded modulation (TCM).

2.1 One- and Two-Dimensional AWGN

Channels

In this section the properties of the 1- and 2-dimensional AWGN channels are
summarized and the 2-dimensional channel is described by complex numbers,
which will make the definition of the passband modulation methods in the next
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but one section much easier. In the next section we will deliver some more
profound proofs and details for the calculation of the noise power and the link
budget as well as for the Nyquist rate.

For baseband signaling only 1-dimensional real-valued signals occur,
however, for passband signaling 2-dimensional modulation methods and 2-
dimensional signal constellations are relevant. For each channel use, one mod-
ulation symbol (also called signal point or simply signal) consisting of two real
values x = (xI , xQ) ∈ Amod is transmitted and one symbol consisting of two real
values y = (yI , yQ) ∈ Adem is received. The formal description is simplified, if x
and y are not conceived as real 2-dimensional vectors but as complex numbers
according to (1.2.3)

x = xI + jxQ = |x| · ejϕ ∈ Amod ⊂ C, (2.1.1)

where I and Q denote inphase and quadrature phase components. The com-
ponents xI = Re(x) and xQ = Im(x) are called real and imaginary parts of x,
and |x| > 0 is the absolute value. The phase (also called angle) ϕ is infinitely
multiple-valued, since every rotation about 2π leads to the same image point.
The principal value of the phase is either ϕ ∈ [0, 2π] or ϕ ∈ [−π, π]. The two
representations of x in (2.1.1) are related by

xI = |x| · cos(ϕ)
xQ = |x| · sin(ϕ) (2.1.2)

and

|x| = √
x · x∗ =

√
x2I + x2Q

ϕ =

{
arctan(xQ/xI) if xI ≥ 0
arctan(xQ/xI) + π if xI ≤ 0

}
,

(2.1.3)

where x∗ = xI − jxQ denotes the conjugate complex number to x = xI + jxQ.
Note that the phase ϕ is continuous at x = 0 because of arctan(+∞) = π/2 =
arctan(−∞) + π.

The energy per modulation symbol is defined as Es = E(|x|2) = E(x2I+x2Q),
see (2.3.1) for more details.

For passband modulation schemes, Definition 1.3 is extended for the 2-
dimensional AWGN. For each channel use, the random variable ν = νI + jνQ
representing the noise is added to the transmitted modulation symbol x =
xI + jxQ ∈ Amod ⊂ C. The result is the received symbol y = x + ν, which
is again denoted y = yI + jyQ ∈ Adem = C, where obviously yI = xI + νI and
yQ = xQ + νQ. The noise energy in each component is still σ2 = N0/2 as in
(1.3.13) and both noise components are statistically independent. The energy
per symbol of the 2-dimensional noise is

E(|ν|2) = E(ν2I + ν2Q) =
N0

2
+

N0

2
= N0 = 2σ2 (2-dimensional). (2.1.4)
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In contrast, the noise energy per symbol for baseband signaling is only half as
high, because σ2 = N0/2 is still the noise energy:

E(ν2) =
N0

2
= σ2 (1-dimensional). (2.1.5)
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Figure 2.1. The PDF of the 2-dimensional Gaussian (normal) distribution

In the next section we will derive these results from the noise power spectral
density of the AWGN channel. According to Subsection A.4.3, the probability
density function (PDF) of the 2-dimensional Gaussian random variable is

fy|x(η|ξ) = 1

πN0
exp

(
−|η − ξ|2

N0

)

=
1

πN0

exp

(
−(ηI − ξI)

2 + (ηQ − ξQ)
2

N0

)
(2.1.6)

=
1√
πN0

exp

(
−(ηI − ξI)

2

N0

)
· 1√

πN0

exp

(
−(ηQ − ξQ)

2

N0

)

and is shown in Figure 2.1. Obviously the 2-dimensional PDF is obtained by the
product of the two 1-dimensional PDFs, which is an equivalent characterization
of the statistical independence of the two noise components. For further details
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of the 2-dimensional Gaussian distribution we refer to Subsection A.4.3. The
transition probabilities of sequences of length n have the form

P (y |x ) = (πN0)
−n · exp

(
− 1

N0
‖y − x‖2

)
, (2.1.7)

where ‖y −x‖ denotes the Euclidean norm of the difference vector which is the
same as the Euclidean distance dE :

dE(x , y) = ‖x − y‖ =

√∑
i

|xi − yi|2

=

√∑
i

((xi,I − yi,I)2 + (xi,Q − yi,Q)2) (2.1.8)

=

√√√√‖x‖2 + ‖y‖2 − 2 · Re
(∑

i

xiy∗i

)
. (2.1.9)

Especially for binary signals with x, y ∈ Amod = {+√Es,−
√
Es}, we have the

relation
dE(x , y) =

√
4Es · dH(x , y) (2.1.10)

between the Euclidean distance dE and the Hamming distance dH .

2.2 A Closer Look at the AWGN Channel

with Coherent Communication

In this section we will discuss the basics of coherent passband communication
in detail and derive an exact model of the 2-dimensional AWGN channel. This
will also lead us to the exact proof of the statements (2.1.4) and (2.1.5) for the
noise energy. Readers who are not interested in these derivations and discussions
may skip this section without any disadvantage. The basic relations between
the algebra of convolutions and Fourier transforms are expected to be known.
For a discussion of these topics we refer to appropriate textbooks such as, for
example, [6, 56, 102, 114].

2.2.1 Coherent Passband Communication and the
Equivalent Discrete AWGN Channel Model

The basic model of a coherent passband communication with linearly modulated
signals is shown in the top half of Figure 2.2 and the corresponding modeling
by an equivalent 2-dimensional low-pass AWGN channel is in the lower half of
the figure. In this subsection we will show the recovering of the desired signal
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in the receiver. In the next subsection we will derive the Nyquist rate, i.e., the
maximum symbol rate for which there are no intersymbol interferences. In the
next but one subsection we will examine the noise energy of the AWGN channel
models, and prove that E(v2i ) = N0/2 for baseband and E(v2i,I) = E(v2i,Q) =
N0/2 for passband signaling, if ideally Φn,n(f) = N0/2 with −∞ < f < +∞ is
assumed for the noise power spectral density. Finally, in the last subsection the
noise energy and the link budget will be directly calculated from the physical
parameters of the transmitter and the receiver.
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Figure 2.2. Coherent passband communication and the equivalent discrete AWGN
channel model

The transmitted values xi = xi,I + jxi,Q in Figure 2.2 have the energy Es =
E(|xi|2), and xi,I and xi,Q are statistically independent. Let h(t) denote the
real-valued transmitter filter and H(f) the system transfer function. They are
related by h(t)◦—•H(f) where the symbol ◦—• denotes the Fourier transform.
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Another Fourier relation

ϕh,h(t) = h(t) 7 h(−t) =
∞∫

−∞
h(τ)h(τ + t) dτ

◦|•
Φh,h(f) = |H(f)|2

(2.2.1)

describes the deterministic autocorrelation function ϕh,h(t) of the transmitter
filter and the corresponding Fourier transform Φh,h(f). Sometimes Φh,h(f) is
also called the energy spectral density [128]. Furthermore, a normalization to

ϕh,h(0) =

∞∫
−∞

h(t)2 dt =

∞∫
−∞

Φh,h(f) df =

{
1 baseband channel
2 passband channel

}
(2.2.2)

is required to guarantee two properties for baseband and passband signals.
Firstly, Es is also the energy per symbol period with the duration Ts of the
transmitted signal s(t), see (2.2.7) for passband and (2.2.11) for baseband sig-
naling. Secondly, at the sampling times after the receiver filter the received
signal y(t) is obtained as the sum of the transmitted symbols and the noise sam-
ples, i.e., y(lTs) = xl+noise, see (2.2.10) for passband and (2.2.12) for baseband
signaling. By the way, the equality of the two integrals in (2.2.2) is also called
Parseval’s theorem. Finally, the Nyquist criterion

ϕh,h(lTs) = 0 for l ∈ Z, l �= 0, (2.2.3)

which is still to be derived in Subsection 2.2.2, must also be satisfied.

(A) Signaling at passband. According to Figure 2.2(a) the transmitted
signal with the carrier frequency fc has the form

s(t) = cos(2πfct) ·
[ = xI(t)︷ ︸︸ ︷
h(t) 7

∑
i

xi,Iδ(t− iTs)

]
− sin(2πfct) ·

[
h(t) 7

∑
i

xi,Qδ(t− iTs)︸ ︷︷ ︸
= xQ(t)

] (2.2.4)

= Re

(
ej2πfct ·

∑
i

xih(t− iTs)︸ ︷︷ ︸
= x(t)

= xI(t) + jxQ(t)

)
, (2.2.5)

where δ(t) denotes the delta Dirac function and Ts denotes the duration of a
modulation symbol, so rs = 1/Ts is the symbol rate. During the transmission
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white Gaussian noise n(t), whose stochastic representation is given in Subsection
2.2.3, is added to the transmitted signal. The relation x(t) = a(t)ejϕ(t) with
a(t) > 0 as given in (2.1.1) leads to the representation

s(t) = a(t) · cos(2πfct+ ϕ(t)), (2.2.6)

where x(t) is called the complex envelope, a(t) is the envelope and ϕ(t) is the
phase.

The statistical independence of xi,I = Re(xi) and xi,Q = Im(xi) as well as
the statistical independence of xi and xl for i �= l imply that the energy of the
transmitted signal per symbol period is

Ts∫
0

E(s2(t)) dt =

Ts∫
0

∑
i

(
cos2(2πfct)E(x2i,I) + sin2(2πfct)E(x2i,Q)

)
h2(t− iTs) dt

=
Es

2
·

Ts∫
0

∑
i

h2(t− iTs) dt =
Es

2
·

∞∫
−∞

h2(t) dt

=
Es

2
· ϕh,h(0) = Es, (2.2.7)

so the energy of the transmitted signal s(t) per symbol period and the energy
or variance of the discrete symbols xi are identical.

An ideal coherent receiver is expected to have exact knowledge of the carrier
frequency fc and the sampling times t = iTs. The optimum receiver is character-
ized by a receiver filter which is designed to provide the maximum signal-to-noise
power ratio at its output. Such a filter is referred to as a matched filter, and it
is simply realized by the time reverse h(−t) of the transmitter filter, see Prob-
lem 2.1 or for example [114, 128]. In other words, the receiver filter h(−t) is
“matched” to the pulse-shaping transmitter filter h(t). To simplify matters, we
will assume a non-causal receiver filter, so that the representation of the com-
munication system is not further complicated by delays. The signal after the
receiver filter in the two branches is combined to a complex-valued signal y(t):

y(t) = h(−t) 7
(
cos(2πfct) · (s(t) + n(t))

)
+jh(−t) 7

(
− sin(2πfct) · (s(t) + n(t))

)
= h(−t) 7

(
e−j2πfcts(t)

)
+ h(−t) 7

(
e−j2πfctn(t)

)
︸ ︷︷ ︸

= ν(t)

. (2.2.8)

The following trigonometric identities

2 cos(A) cos(B) = cos(A− B) + cos(A+B),
2 sin(A) sin(B) = cos(A− B)− cos(A +B),
2 sin(A) cos(A) = sin(A−B) + sin(A+B)

(2.2.9)
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lead to

e−j2πfcts(t) =
(
cos(2πfct)− j sin(2πfct)

)
·
(
cos(2πfct)xI(t)− sin(2πfct)xQ(t)

)
=

1

2
·
[
xI(t) + jxQ(t)

+
(
cos(2π2fct)− j sin(2π2fct)

)
xI(t)

−
(
sin(2π2fct) + j cos(2π2fct)

)
xQ(t)

]
.

The low-pass filtering with h(t) easily suppresses all signal frequencies at the
double carrier frequency 2fc leaving only the signal

y(t) =
1

2
·
[
h(−t) 7

(
xI(t) + jxQ(t)

)]
+ ν(t)

=
1

2
·
[
h(−t) 7

∑
i

xih(t− iTs)

]
+ ν(t)

=
1

2
·
∑
i

xiϕh,h(t− iTs) + ν(t).

Thus for ideal sampling at times t = lTs with l ∈ Z and a satisfied Nyquist
criterion (2.2.3) we obtain the transmitted symbols xl with a superimposition
by the noise:

yl = y(lTs) = yl,I + jyl,Q

=
1

2
·
[
xl ϕh,h(lTs)︸ ︷︷ ︸

=2

+
∑
i�=l

xi ϕh,h(lTs − iTs)︸ ︷︷ ︸
=0

]
+ ν(lTs)

= xl + ν(lTs). (2.2.10)

If the Nyquist criterion (2.2.3) was not satisfied, xl would not only be super-
imposed by the noise samples but also by the previously transmitted symbols
(and also by the following transmitted symbols because of the presumed non-
causality), which are weighted with the values ϕh,h(±Ts), ϕh,h(±2Ts), . . . . How-
ever, these intersymbol interferences can all be nullified with ideal sampling, if
the transmitter and receiver filters are properly designed as described in the
next subsection.

(B) Signaling at baseband. Here the matter is much simpler. In Figure
2.2 fc = 0, so that the lower branch as well as all multiplications with cos(2πfct)
and sin(2πfct) are dropped. Similar to (2.2.7), for the energy of the transmitted
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signal per symbol period,

Ts∫
0

E(s2(t)) dt =

Ts∫
0

∑
i

E(x2i )h
2(t− iTs) dt = Es

∞∫
−∞

h2(t) dt

= Es · ϕh,h(0) = Es. (2.2.11)

For the received signal after the matched filter,

y(t) = h(−t) 7
[
h(t) 7

∑
i

xiδ(t− iTs) + n(t)
]

=
∑
i

xiϕ(t− iTs) + h(−t) 7 n(t)︸ ︷︷ ︸
= ν(t)

= xl · ϕh,h(lTs)︸ ︷︷ ︸
=1

+
∑
i�=l

xi ϕh,h(lTs − iTs)︸ ︷︷ ︸
=0

+ν(lTs)

= xl + ν(lTs) (2.2.12)

for sampling at times t = lTs, l ∈ Z.

2.2.2 The Nyquist Criterion for Intersymbol

Interference-Free Communication

In (2.2.3) the Nyquist criterion ϕh,h(lTs) = 0 for all l ∈ Z, l �= 0 was presupposed.
In this subsection we attempt to determine the shape of pulses that satisfy this
criterion of no intersymbol interference. In the course of this we will obtain a
connection between the symbol rate rs = 1/Ts and the bandwidth W .

It is apparent that the Nyquist criterion (2.2.3) on the autocorrelation func-
tion is satisfied, if and only if there is equality in the time-domain equation

ϕh,h(0)δ(t) =
∑
i

ϕh,h(iTs)δ(t− iTs)

= ϕh,h(t) 7
∑
i

δ(t− iTs)

◦|•
ϕh,h(0) = Φh,h(f) · 1

Ts

∑
i

δ

(
f − i

Ts

)

=
1

Ts

∑
i

Φh,h

(
f − i

Ts

)
. (2.2.13)

The last term in the frequency-domain equation is constant, if the system trans-
fer function G(f) = Φh,h(f) is symmetric both to 0 and to f = 0.5/Ts, i.e.,
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formally G(f) = G(−f) and G(0.5/Ts + f) = G(0.5/Ts − f). An important
example for this is the raised cosine filter, whose transfer function and impulse
response are shown in Figures 2.3 and 2.4. The parameter α with 0 ≤ α ≤ 1 is
also called rolloff factor. A small α implies a narrow spectrum, whereas a large
α causes small leading and trailing echos and therefore smaller degradations in
the case of non-perfect sampling times. In most practical systems α lies between
0.1 and 0.3. Formally, for the raised cosine filter in frequency and time domain,

G(f) =




1 if |f | < 1− α

2Ts

cos2
[
π

2α

(
|f |Ts − 1− α

2

)]
if

1− α

2Ts
< |f | < 1 + α

2Ts

0 if
1 + α

2Ts
< |f |




•|◦ (2.2.14)

g(t) =
sin(πt/Ts)

πt
· cos(απt/Ts)

1− (2αt/Ts)2
.

A simple transformation leads to further useful representations of the system
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Figure 2.3. Raised cosine filter in frequency domain
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Figure 2.4. Raised cosine filter in time domain

transfer function for the range (1− α)/(2Ts) < |f | < (1 + α)/(2Ts):

cos2
[
π

2α

(
|f |Ts − 1− α

2

)]
=

1

2

(
1 + cos

[ π
2α

(2|f |Ts − (1− α))
])

=
1

2

(
1− sin

[ π
2α

(2|f |Ts − 1)
])

. (2.2.15)

Since

h(t) = h(−t)◦—•H(f) =
√

G(f), ϕh,h(t) = g(t), (2.2.16)

the transmitter and receiver filters are usually also called square root raised
cosine filter. For passband signaling, g(t) and G(f) have to be multiplied by 2,
and h(t) and H(f) have to be multiplied by

√
2 to satisfy (2.2.2).

Particularly for α = 0, G(f) = 1 if |f | < 0.5/Ts, and G(f) = 0 other-
wise. Thus, G(f) = rect(fTs) is a rectangular spectrum with the corresponding
impulse response

g(t) =
sin(πt/Ts)

πt
=

1

Ts
· sinc(t/Ts) = h(t) = ϕh,h(t),

where sinc(x) = sin(πx)/(πx), and rect(x) = 1 for |x| < 1/2 and rect(x) = 0
otherwise. Since the impulse response is unlimited on both sides, i.e., does not
exactly reach zero in finite time, it has to be cut off at the edges in the time
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domain for a digital implementation, which leads to a small widening of the
spectrum. The larger α is, the faster g(t) and h(t) fade away. By the way, note
the interesting relation

sin(πt/Ts)

πt
=

sin(πt/Ts)

πt
7
sin(πt/Ts)

πt

obtained from rect(fTs) = rect(fTs) · rect(fTs) by inverse Fourier transform.
A further example of the satisfaction of the Nyquist criterion (2.2.3) is given

by a rectangular impulse in the time domain

h(t) =
1

Ts
rect

(
t

Ts

)
, g(t) = ϕh,h(t) =


 1− |t|

Ts
if |t| ≤ Ts

0 otherwise


 ,

◦|•
◦|• (2.2.17)

H(f) = sinc(fTs), G(f) = Φh,h(f) = sinc2(fTs).

The corresponding autocorrelation function is a triangular function. Since the
received signal is integrated over a symbol period, the term integrate-and-dump
receiver is also often used. Since H(f) in (2.2.17) never exactly reaches zero,
the bandwidth is theoretically unlimited. A cut on the spectrum required for
a practical implementation then leads to slight intersymbol interferences. The
example in (2.2.17) with a rectangular impulse response and the raised cosine
impulse with a rectangular spectrum for α = 0, introduced in (2.2.14), empha-
sizes that the product of bandwidth and symbol duration is, in theory, always
infinitely large.

The bandwidth is only defined for positive frequencies. Since

G(f) > 0 only if



|f | < 1 + α

2Ts
baseband channel

|f − fc| < 1 + α

2Ts
passband channel


 , (2.2.18)

the bandwidth Wα for the raised cosine impulse with rs = 1/Ts turns out to be

Wα = rs ·



1 + α

2
baseband channel

1 + α passband channel


 . (2.2.19)

Trivially the minimum bandwidth W = W0 results for α = 0, this is also referred
to as the Nyquist bandwidth. Hence, the maximum number rs of modulation sym-
bols to be transmitted per second is limited to rs ≤ 2W for baseband signaling
or rs ≤ W for passband signaling, given the requirement of no intersymbol
interference for a channel with noise but without any signal distortions.

The Nyquist rate is also related to the Shannon sampling Theorem, intro-
duced to communication theory in 1949 by C.E.Shannon. This famous theorem
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states that a baseband band-limited signal s(t) of bandwidth W is uniquely rep-
resented by samples of s(t), taken at a rate of at least double the bandwidth, i.e.,
at rsamp = 1/Tsamp ≥ 2W samples per second. The signal can be reconstructed
from its samples by use of the interpolation formula

s(t) =
∑
i

s(iTsamp) · sinc
(
t− iTsamp

Tsamp

)
, (2.2.20)

where sinc(x) = sin(πx)/(πx). Sampling below the Nyquist rate results in fre-
quency aliasing. The proof is contained in nearly every textbook on digital
communications.

2.2.3 Representation of Passband and Baseband Noise

In Figure 2.2, n(t) represents the continuous-time noise signal, also called the
input noise to the receiver. The objective of this subsection is to determine the
output noise νl = ν(lTs) of the demodulator as defined in (2.2.10) for passband
and (2.2.12) for baseband signaling from the properties of the input noise n(t).
While E(n2(t)) has the unit of instantaneous power, E(ν2l ) is the average energy
per symbol period.

The primary spectral characteristic of thermal noise is that its power spec-
tral density (also called power density spectrum) Φn,n(f) is constant over all
frequencies of interest. In other words, a thermal noise source emanates an
equal amount of noise power per unit bandwidth at all interesting frequencies –
typically from dc to about 1012 Hz [128]. Therefore, a simple model for thermal
noise is the ideal AWGN channel with a noise power spectral density which is
constant over all frequencies (the term white in the AWGN abbreviation refers
to the constant spectral density):

Φn,n(f) =
N0

2
, −∞ < f < +∞

•|◦
ϕn,n(t) =

N0

2
· δ(t).

(2.2.21)

The autocorrelation function ϕn,n(t) is given by the inverse Fourier transform of
the power spectral density, which is also known as the Wiener-Khintchine rela-
tion. For white noise, ϕn,n(t) turns out to be a delta Dirac function weighted
by the factor N0/2, where N0 is called one-sided and N0/2 is called two-sided
noise power density. Generally, ϕn,n(t) = E(n(t+ τ)n(τ)), where the autocorre-
lation function is independent of τ , since n(t) is presupposed to be a stationary
stochastic process.

According to (2.2.21), formally, the noise power is not finite, because
E(n2(t)) = ϕn,n(0) =

∫∞
−∞Φn,n(f) df = ∞. However, since this, of course,
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is not physically realizable, and the properties of the noise for frequencies out-
side of the spectrum of the transmitted signal are practically irrelevant, we can
simply assume a spectral limitation of the noise, which then also leads analyt-
ically to a finite noise power. This spectral limitation is, of course, guaranteed
in practice by the receiver filter, whereby all noise frequencies outside of the
spectrum of the transmitted signal are suppressed.

All statements in this subsection so far are not only valid for baseband but
also for passband signaling. We will now treat these two cases separately.

(A) Signaling at passband. For a comprehensive analysis of passband
Gaussian noise we refer to [103, 114, 152]. Here we will examine a simpler model.
According to (2.2.8), ν(t) = h(−t) 7 z(t) with z(t) = e−j2πfctn(t), thus for the
real and imaginary parts of the noise,

νI(t) = h(−t) 7
(
cos(2πfct)n(t)︸ ︷︷ ︸

= zI(t)

)
=

∞∫
−∞

h(τ − t) cos(2πfct)n(t) dτ,

νQ(t) = h(−t) 7
(− sin(2πfct)n(t)︸ ︷︷ ︸

= zQ(t)

)
=

∞∫
−∞

h(τ − t) sin(2πfct)n(t) dτ.

(2.2.22)

So with E(n(τ)n(τ ′)) = N0/2 · δ(τ − τ ′) we obtain

E(ν2I (t)) =

∞∫
−∞

∞∫
−∞

h(τ − t)h(τ ′ − t) cos(2πfcτ) cos(2πfcτ
′)E(n(τ)n(τ ′) dτdτ ′

=
N0

2
·

∞∫
−∞

h2(τ − t) cos2(2πfcτ) dτ.

Obviously, we can use the approximation cos2(2πfcτ) ≈ 1/2, because the func-
tion cos2(2πfcτ) oscillates at high-frequency in comparison to h(t). So with
(2.2.2) this finally leads to

E(ν2I (t)) =
N0

4
·

∞∫
−∞

h2(τ) dτ =
N0

4
· ϕh,h(0)︸ ︷︷ ︸

= 2

=
N0

2
. (2.2.23)

It is obvious that also E(ν2Q(t)) = N0/2. Furthermore with the previous methods

E(νI(t)νQ(t)) =
N0

2
·

∞∫
−∞

h2(τ − t) cos(2πfcτ) sin(2πfcτ)︸ ︷︷ ︸
= sin(4πfcτ)/2 ≈ 0

dτ = 0, (2.2.24)

thus Re(νl) and Im(νl) are statistically independent.
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(B) Signaling at baseband. According to (2.2.12), ν(t) = h(−t) 7 n(t)
for the noise after the receiver filter, thus for the power spectral density and the
autocorrelation function

Φν,ν(f) = Φn,n(f) · |H(f)|2 = N0

2
|H(f)|2

•|◦
ϕν,ν(f) = ϕn,n(t) 7 ϕh,h(t) =

N0

2
ϕh,h(t).

(2.2.25)

Finally, with (2.2.2),

E(ν2(t)) = ϕν,ν(0) =
N0

2
· ϕh,h(0)︸ ︷︷ ︸

= 1

=
N0

2
. (2.2.26)

(C) Summary of passband and baseband signaling. The average
signal power for passband as well as for baseband signaling, according to (2.2.7)
and (2.2.11), is

S =

Ts∫
0

E(s2(t)) dt = Es · rs = Eb · rb, (2.2.27)

where Es and Eb denote the signal energy per symbol and per information bit,
and rs and rb denote the symbol rate of the channel (or baud rate) and the
bit rate of the information source, respectively. From Section 1.4 we recall the
relations Es = RM · Eb and rs = rb/(RM) for a code rate of R and 2M -ary
modulation.

The noise power N is the product of the bandwidth and the one-sided power
spectral density,

N = N0 ·W =

{
N0 · rs/2 baseband channel
N0 · rs passband channel

}
. (2.2.28)

So for the signal-to-noise power ratio,

S

N
=

{
2Es/N0 baseband channel
Es/N0 passband channel

}
. (2.2.29)

For passband channels, E(|νi|2) = E(ν2i,I + ν2i,Q) = N0/2+N0/2 = N0. Thus for
baseband as well as for passband signaling generally

E(|xi|2)
E(|νi|2) =

S

N
. (2.2.30)

In other words, the ratio of signal-to-noise energies per symbol period equals the
signal-to-noise power ratio.
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2.2.4 Link Budget of Wireless Transmission

In this subsection, we will determine the signal-to-noise ratio Es/N0 = S/N
from the physical parameters of a wireless transmission, and we presuppose a
passband AWGN channel to represent the thermal noise. Many other influences
have to be considered, including the distance between transmitter and receiver,
the carrier frequency, the bandwidth, the antenna characteristics, maybe addi-
tional rain fading and some further details. A more detailed communication link
budget analysis can be found, for example, in [128].

For the power relationship between transmitter and receiver, we assume
that the transmission is not influenced by the earth’s surface or other obstruct-
ing bodies. For instance, this is ideally satisfied for space communication or
microwave line-of-sight communication, but not for mobile radio, of course. Let
PTx be the average transmitted power in Watts, then the average received power
S can be calculated from the expression

S =
PTx ·GTx ·GRx

Lfree · Lrain · L0
, (2.2.31)

where

• GTx andGRx describe the directive antenna gains of transmitter and receiver
antennas, respectively. The gain G can be calculated as follows from the
physical aperture area A, given in square meters (for example A = πD2/4
for a parabolic antenna with diameter D), and the antenna efficiency factor
η (which is typically between 0.55 for a parabolic reflector and 0.75 for a
horn-shaped antenna [128])

G =
4πAη

λ2
. (2.2.32)

The product Aη describes the effective aperture area of the antenna. An
omnidirectional antenna with isotropic radiated power is characterized by
GTx = 1. Only the product PTx·GTx rather than the single factors is relevant
for the receiver, and this product is usually referred to as the equivalent
isotropic radiated power (EIRP).

• Lfree describes the path loss or free-space loss which can be calculated as

Lfree =

(
4πd

λ

)2

, (2.2.33)

or Lfree,dB = 20 · log10(4πd/λ) in decibels, where d is the distance between
the transmitter and the receiver antenna (also called range) in meters and
λ = c/fc is the wavelength in meters which can be calculated from the
velocity of light c ≈ 3 ·108 m/s and the carrier frequency fc in Hertz. Hence,
a doubling of the distance or a doubling of the carrier frequency increases
the path loss by 6 dB.
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• Lrain describes the rain fading which is highly dependent on the frequency
range (and also on more sophisticated things like rain zone and average link
availability per year). For a simple approximation, the rain fading can be
assumed to be proportional to the distance with a fixed constant Lrain/km

describing the rain fading per km:

Lrain ≈ d · 1000 · Lrain/km. (2.2.34)

However, this is not exactly true and for a detailed analysis of rain fading we
refer to [153]. An application of error-control coding in wireless microwave
line-of-sight access systems with considerable influence from rain fading is
presented in Section ?.?. For satellite communications, the rain fading is
trivially a fixed amount and does not depend on the satellite’s distance.

• L0 represents additional implementation losses or may contain a safety fac-
tor (also called link margin, usually between 1 and 5 dB depending on the
application under consideration).

The input noise power at the receiver can be calculated as follows (using some
slight simplifications)

N = N0 ·W = FKT ·W, (2.2.35)

where F is the dimensionless receiver noise figure (typically between 5 and 8
dB), K = 1.38 · 10−23 Joule/Kelvin is the Boltzmann constant, T = 290 Kelvin
is the standard “room” temperature and W is the bandwidth in Hertz. The
noise power results in units of Watts (remember that Joule equals Watts times
seconds or Watts per Hertz, i.e., J = W·s = W/Hz). The value of T also results
in an aesthetically pleasing number of KT = 4 ·10−21 or −204 dBW/Hz or −174
dBm/Hz. It should be mentioned that a doubling of the bandwidth increases
the noise power by 3 dB.

Finally, we can now calculate Es/N0 from the physical parameters of the
transmitter and the receiver,

Es

N0
=

S

N
=

PTx ·GTx ·GRx

N · Lfree · Lrain · L0
, (2.2.36)

this term is called the signal-to-noise ratio (S/N or SNR) or carrier power-to-
noise ratio (C/N). To guarantee a specified value of Es/N0 at the receiver, the
minimum required transmit power, expressed in decibels, is

PTx,dB =

(
Es

N0

)
dB

+NdB+Lfree,dB+Lrain,dB+L0,dB−GTx,dB−GRx,dB (2.2.37)

Example 2.1. (Adopted from [151]). Consider a satellite at an altitude of
d = 800 km transmitting to a mobile receiver at fc = 1.5 GHz with a bandwidth
of W = 1 MHz. Hence, λ = 0.2 m for the wavelength and Lfree = 154.0 dB for
the path loss. Rain fading does not occur at such low frequencies.
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For the satellite we assume an antenna gain of GTx = 30 dBi and a transmit
power of PTx = 100 W or 20 dBW, so the EIRP is 50 dBW.

For the receiver we assume an antenna gain ofGRx = 3 dBi and a link margin
of L0 = 6 dB. Hence, the received signal power is S = 20+30+3−154.03−0−6 =
−107.0 dBW or −77.0 dBm or 1.98 · 10−8 mW. Furthermore, we assume a noise
figure of 5 dB, resulting in a noise power of N = 5−204+10·log10(106) = −139.0
dBW or −109.0 dBm or 1.27 · 10−11 mW.

Finally, we obtain Es/N0 = S/N = −107.0− (−139.0) = 32.0 dB. �

2.3 Some One- and Two-Dimensional Signal

Constellations (ASK, PSK, QAM)

2.3.1 Minimum Euclidean Distance

We consider an AWGN channel with a 2M -ary modulation alphabet or signal
constellation Amod = {ξ0, . . . , ξ2M−1}, and, as in Section 1.6, presuppose that the
single modulation symbols or signal points occur with equal a priori probabilities
P (x = ξi) = Px(ξi) = 2−M . Furthermore, on average the energy per encoded
symbol (i.e., per channel use) is denoted

Es = E(|x|2) = 1

2M
·
2M−1∑
i=0

|ξi|2. (2.3.1)

Figure 2.5 in the next subsection shows some 1-dimensional (ASK) and 2-
dimensional (PSK, QAM) signal constellations which are normalized to the same
Es for easier comparison. The parameter

∆0 = min
i,l

|ξi − ξl|√
Es

(2.3.2)

denotes the minimum Euclidean distance between the signal points in the mod-
ulation alphabet Amod after normalizing to unit symbol energy Es = 1. So
∆0

√
Es = mini,l |ξi− ξl| is the minimum Euclidean distance in the general case.

The index 0 of ∆ will become clear in Chapter 11, where we will introduce
further distances within the signal constellation.

(1) For 2M -ASK (Amplitude Shift Keying), the signal constellation is

Amod,ASK =

{
(2i− 2M + 1)

√
3

22M − 1
Es

∣∣∣∣∣ i = 0, . . . , 2M − 1

}
(2.3.3)

and the minimum Euclidean distance is

∆0,ASK =

√
12

22M − 1
. (2.3.4)
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(2) For 2M -PSK (Phase Shift Keying), the signal constellation is

Amod,PSK =

{
ej2πi/2

M
√

Es

∣∣∣∣ i = 0, . . . , 2M − 1

}
(2.3.5)

and the minimum Euclidean distance is

∆0,PSK = 2 · sin(π/2M), (2.3.6)

where ∆0,PSK is obtained by elementary geometric calculations. For some small
values of M , we note that ∆0,2−PSK = 2, ∆0,4−PSK =

√
2 and ∆0,8−PSK =√

2−√2.

(3) For 2M -QAM (Quadrature Amplitude Modulation) the signal points are
on a trellis which is why the term Z2-signal constellation is often used. More
precisely, this is also called 2Z2 + (1, 1)-signal constellation. In the special case
of M being an even integer,

Amod,QAM =

{
(i+ jl)

∆0

2

√
Es

∣∣∣∣∣ i, l = ±1,±3, . . . ,±(2M/2 − 1)

}
(2.3.7)

for the signal constellation, and

∆0,QAM =

√
6

2M − 1
(2.3.8)

for the minimum Euclidean distance. For example, 64-QAM emerges from an
8 × 8 pattern and 256-QAM from a 16 × 16 pattern. 32-QAM emerges from a
6 × 6 pattern by omitting the four corners (see also Figure 11.11?), 128-QAM
emerges from a 12 × 12 pattern by omitting the four 2 × 2 subpatterns at the
corners. A sphere-shaped 960-QAM constellation is shown in Figure 16.?.

Table 2.1 contains a list of the minimum Euclidean distances of ASK, PSK
and QAM for values of M which are relevant in practice.

Table 2.1. Minimum Euclidean distance ∆0 in the modulation alphabet Amod

M 2M ASK PSK QAM
1 2 2.0000 2.0000
2 4 0.8944 1.4142

√
2 = 1.4142

3 8 0.4364 0.7654
4 16 0.2169 0.3902

√
2/5 = 0.6325

5 32 0.1083 0.1960
√
2/10 = 0.4472

6 64 0.0541 0.0981
√
2/21 = 0.3086

7 128 0.0271 0.0491
√
2/41 = 0.2209

8 256 0.0135 0.0245
√
2/85 = 0.1534
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2.3.2 Some Examples of Signal Constellations

Figure 2.5 shows some 1- and 2-dimensional signal constellations for ASK, PSK
and QAM. As already mentioned, the scale is chosen such that the symbol energy
Es is identical for the five modulation schemes. 2-PSK is the same as 2-ASK
and is also called BPSK (Binary Phase Shift Keying). 4-PSK and 4-QAM are
also identical and are often called QPSK (Quaternary Phase Shift Keying).

2–ASK 4–ASK

4–PSK
4–QAM

8–PSK 16–QAM

Figure 2.5. Some 1- and 2-dimensional signal constellations (ASK, PSK, QAM)

Figures 2.6, 2.7 and 2.8 show some scatter plots of received noisy signal
constellations, each with a normalization of the signal energy to Es = 1. There
are 100 received symbols per signal point in the three Figures, i.e., 800 received
values altogether for the two 8-PSK figures and 6400 received values for 64-
QAM. The lines bound the decision regions, which are sectors in the case of
PSK and quadratic (except for the outer regions) in the case of QAM. The ratio
Es/N0 is mentioned at the bottom right-hand corner of each of the three figures.
From the performance curves in Figure 2.10 one can see that the symbol-error
rate is about 10−5 in Figure 2.6, about 10−1 in Figure 2.7 and about 10−11 in
Figure 2.8. In Figures 2.6 and 2.7, the signal points are alternately marked as
circles and crosses to distinguish adjacent sectors.

For further details of the modulation schemes we refer to according text-
books, for example [6, 56, 114, 112, 128, 151].



2.3 Some One- and Two-Dimensional Signal Constellations 67

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

 E
s

/N
0
=18 dB

Figure 2.6. 8-PSK noisy signal constellation with high signal-to-noise ratio
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Figure 2.7. 8-PSK noisy signal constellation with low signal-to-noise ratio
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Figure 2.8. 64-QAM noisy signal constellation

2.4 Performance Analysis of Uncoded

Signaling over AWGN Channels

An exact calculation of the error rate is also impossible to make for uncoded
signaling, except for a few very simple modulation schemes like 2-PSK and 4-
PSK. So first we will derive a generally applicable weak bound and then two
specific tight bounds for PSK and QAM. These results will then be illustrated
in various figures with performance curves.

2.4.1 A General Weak Bound for Arbitrary Modulation
Schemes

In the following, we will approximate the error probability for arbitrary uncoded
2M -ary modulation schemes. The decision device in the demodulator decides on
x̂ ∈ Amod = Adem by quantizing the received signal y = x + ν. Obviously, allo-
cations to adjacent signal points are more probable than to signal points which
are further away. The symbol-error probability Ps is only slightly overestimated,
if for each |ν| > ∆0/2 ·

√
Es one error is assumed, so generally

Ps ≤ P

(
|ν| > ∆0

2

√
Es

)
= exp

(
−∆2

0Es

4N0

)
. (2.4.1)
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This equality is obtained similarly to the proof of (A.4.5) in Subsection A.4.2:

P

(
|ν| > ∆0

2

√
Es

)
=

∫∫
ν2

I+ν
2
Q>∆2

0Es/4

1

πN0
e−(ν2

I+ν
2
Q)/N0 dνI dνQ

A substitution with polar coordinates, νI = r
√
N0 cosϕ, νQ = r

√
N0 sinϕ leads

to the Jacobian determinant

det

(
∂(νI , νQ)

∂(r, ϕ)

)
= det

( √
N0 cosϕ

√
N0 sinϕ

−r
√
N0 sinϕ r

√
N0 cosϕ

)
= r
√

N0.

Hence, with a further substitution u = r2,

P

(
|ν| > ∆0

2

√
Es

)
=

∫
r2>

∆2
0Es

4N0

2π∫
ϕ=0

r

π
· e−r2 dϕ dr

=

∞∫
∆2

0
Es

4N0

e−u du = exp

(
−∆2

0Es

4N0

)
.

So (2.4.1) is proven. If we apply the inequality (A.4.17) to this result, it leads
to a lower bound, but unfortunately not to an upper bound for Ps:

Ps ≤ exp

(
−∆2

0Es

4N0

)
≥ 2 ·Q


√∆2

0Es

2N0


 . (2.4.2)

Both terms on the right side of the inequality in (2.4.2) are shown in Figure 1.5
(with ∆0 = 2) and in Figure A.5, however, with different scaling factors.

2.4.2 A Tight Bound for PSK

Particularly for PSK, a more precise approximation of the symbol-error rate can
be derived, as will be demonstrated in Figure 2.9. The correct decision region of
PSK corresponds to the sector which is not hatched (i.e., the unlimited sector),
whereas for the general upper bound in (2.4.1) the decision region was decreased
to a sphere of radius ∆0

√
Es/2. In Figure 2.9, B1 and B2 denote the two half-

planes. The following very exact approximation of the symbol-error rate is
obtained by counting the opposite double-hatched sector twice. Especially for
a large Es/N0, there are only seldomly received values in the double-hatched
region so that the error in the following inequality is very small:
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Ps,PSK = P (x+ ν ∈ B1 ∪ B2)

= P (x+ ν ∈ B1) + P (x+ ν ∈ B2)− P (x+ ν ∈ B1 ∩ B2)

≤ P (x+ ν ∈ B1) + P (x+ ν ∈ B2)

= 2 · P (x+ ν ∈ B1)

= 2 · P
(
νp > ∆0

√
Es/2

)
,

where νp denotes the 1-dimensional noise component, which is perpendicular to
the boundary of the half-plane B1. Since the 2-dimensional Gaussian noise is
rotationally invariant (see the considerations at the end of Appendix A.4.3), νp
as well as νI and νQ have the variance σ2 = N0/2. Thus

Ps,PSK ≤ 2 · P
(
νp > ∆0

√
Es/2

)

= 2 · P

 νp√

N0/2
>

√
∆2

0Es

2N0




= 2 ·Q


√

∆2
0Es

2N0


 = 2 ·Q

(√
2Es

N0
· sin
(
π

q

))
. (2.4.3)
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Figure 2.9. Decision regions for computing PSK symbol-error probabilities (q = 8)
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For 4-PSK the symbol-error rate can even be calculated exactly without any
approximation errors. Again we consider Figure 2.9, where the boundary lines
of B1 and B2 are perpendicular to one another at M = 2, which results in

Ps,4−PSK = P (x+ ν ∈ B1 ∪ B2)

= 1− P (x+ ν ∈ B1 ∪ B2)

= 1− P (xI + νI > 0 and xQ + νQ > 0)

= 1− P (νI > −xI and νQ > −xQ)

= 1− P
(
νI > −

√
Es/2

)2
= 1−

(
1−Q

(√
Es

N0

))2

= Q

(√
Es

N0

)
·
[
2−Q

(√
Es

N0

)]
︸ ︷︷ ︸
≈ 2 for Es/N0 ! 1

(2.4.4)

2.4.3 A Tight Bound for QAM

We can also tighten the general weak bound for QAM. At the signal points
inside the constellation a symbol error occurs, if the received signal is outside of
the square around the transmitted signal; this is the case if and only if |νI | or
|νQ| are greater than ∆0/2 ·

√
Es. However, as can be seen from the example of

64-QAM in Figure 2.8, at the 4 corner points the decision regions are unlimited
on two sides and at the other 24 outer signal points unlimited on one side. Now
we can determine a simple upper bound for the symbol-error probability by
constricting the decision regions of the outer signals to the decision regions of
the inner signals:

Ps,QAM ≤ P

(
|νI | > ∆0

2

√
Es or |νQ| > ∆0

2

√
Es

)

= 1− P

(
|νI | < ∆0

2

√
Es and |νQ| < ∆0

2

√
Es

)

= 1− P

(
|νI | < ∆0

2

√
Es

)2

= 1−

1− P


 |νI |

σ
>

√
∆2

0Es

2N0




2

= 1−

1− 2Q


√∆2

0Es

2N0




2
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= 4Q



√

∆2
0Es

2N0


 ·

1−Q



√

∆2
0Es

2N0




 (2.4.5)

Of course this bound is really only tight for higher-leveled QAM, because then
the number of inner signal points dominates. In contrast, for 2-PSK and 4-
PSK considerable errors occur with this upper bound, as can be seen from the
performance comparison in the following subsection.

Note: except for the factor in square brackets in (2.4.5), which is approxi-
mately 1, the tight bound for QAM is twice the tight bound for PSK in terms
of equal values of ∆0. However, this is of little consequence, since for an equal
M , almost always

∆0,2M−PSK < ∆0,2M−QAM (2.4.6)

according to Table 2.1, except in the case of M = 2 where there is equality.

2.4.4 The Exact Result for ASK

Since the conditions for ASK are simpler, we can easily calculate an exact result
for the symbol-error rate. For both the outer signals of 2M -ASK,

Ps,outer = P

(
ν >

∆0

2

√
Es

)
(2.4.7)

and for the 2M − 2 inner signals

Ps,inner = P

(
|ν| > ∆0

2

√
Es

)
= 2 · P

(
ν >

∆0

2

√
Es

)
(2.4.8)

and therefore

Ps,2M−ASK =
1

2M

(
2 · Ps,outer + (2M − 2) · Ps,inner

)
=

2(2M − 1)

2M
· P
(
ν >

∆0

2

√
Es

)
.

As in (2.4.5), E(ν2) = N0/2 leads to a general exact result for arbitrary M , to
the already known result for M = 1 and to a very precise approximation for
M ! 1:

Ps,2M−ASK =
2(2M − 1)

2M
·Q


√

∆2
0Es

2N0


 (2.4.9)




= Q

(√
2Es

N0

)
for M = 1

≈ 2Q



√

∆2
0Es

2N0


 for M > 1




. (2.4.10)
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In (2.3.4) and (2.3.8), we had obtained

∆0,2M−ASK =

√
12

22M − 1
, ∆0,2M−QAM =

√
6

2M − 1
,

so for uncoded signaling with reference to Eb/N0,

Ps,2M−ASK ≈ 2Q

(√
6

22M − 1
·M · Eb

N0

)
(2.4.11)

Ps,22M−QAM ≈ 4Q

(√
3

22M − 1
· 2M · Eb

N0

)
, (2.4.12)

where (2.4.12) is determined from (2.4.5). Except for the factor 2 the symbol-
error rates of 2M -ASK and 22M -QAM are identical. A graphical comparison of
ASK and QAM will follow in Figure 3.13.

2.4.5 Numerical Performance Results
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Figure 2.10. Performance of uncoded PSK and QAM over symbol energy
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Figure 2.11. Performance of uncoded PSK and QAM over bit energy

The results derived previously are summarized as a compendium of formulas
in Table 2.2, and shown as performance curves for 2-PSK, 4-PSK, 8-PSK, 16-
PSK as well as 16-QAM and 64-QAM, each for the energy per symbol in Figure
2.10 and for the energy per bit in Figure 2.11. Since 2-PSK and 2-ASK as well
as 4-PSK and 4-QAM are completely identical modulation schemes, these two
cases are addressed as PSK schemes. In Figures 2.10 and 2.11 the tight bounds
are shown with solid lines for PSK and QAM, and the exact symbol-error rate
is shown with dotted lines for 2-PSK and 4-PSK (analytical results) and for 16-
QAM and 64-QAM (as obtained from computer simulations). The exact symbol-
error rate for 8-PSK and 16-PSK (as obtained from computer simulations) is
within the line width of the concerned graphs for the tight bounds. In Figure
2.10, there is also the general weak bound sketched with dashed lines for all
modulation schemes.

Generally, the difference between the tight bounds for PSK or QAM and the
general weak bound in Figure 2.10 is relatively small. The vertical difference in
the symbol-error rate Ps is limited to a factor of 10, and the horizontal difference
in Es/N0 is limited to a maximum of 0.5 dB for the area below Ps = 10−8.

The quality of the tight bounds is demonstrated by their deviation from
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Table 2.2. Summary of bounds on the uncoded symbol-error rate Ps

2M -ary modulation scheme 2-PSK 4-PSK
(ASK, PSK, QAM, arbitrary) (∆0 = 2) (∆0 =

√
2)

Exact
results

For ASK:
2(2M − 1)

2M
·Q


√
∆2

0Es
2N0


,

∆0,ASK ≈
√

12
22M − 1

For PSK and QAM:
not available

Q

(√
2Es
N0

)
Q

(√
Es
N0

)
·[

2−Q
(√

Es
N0

)]

Tight
PSK
bound

2Q


√∆2

0Es
2N0


, 2Q

(√
2Es
N0

)
2Q
(√

Es
N0

)
∆0,PSK = 2 sin(π/2M )

Tight
QAM
bound

4Q


√∆2

0Es
2N0


 · 4Q

(√
2Es
N0

)
· 4Q

(√
Es
N0

)
·

1−Q

√∆2

0Es
2N0




, [

1−Q
(√

2Es
N0

)] [
1−Q

(√
Es
N0

)]

∆0,QAM ≈
√

6
2M − 1

not ingenious not ingenious

General
weak
bound

exp
(
−∆2

0Es
4N0

)
exp
(
−Es
N0

)
exp
(
− Es
2N0

)

the exact symbol-error rates for the cases of 2-PSK and 4-PSK. For 2-PSK the
deviation is fairly small; according to Table 2.2 the tight PSK bound has an
error of a factor of 2. However, for 4-PSK the tight bound is very exact, as can
be seen in Table 2.2 as well as in Figure 2.10 where the tight bound can not
even be distinguished from the exact curve. Further computer simulations of
the symbol-error rate show only small deviations for QAM and extremely small
deviations for PSK from the tight bounds. So, for most practical applications
and for all modulation schemes except 2-PSK, the tight bounds can be considered
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as approximately exact results.

The relations between the energies for of 2M -ary modulation schemes are
reproduced from (1.4.10) to (1.4.12) for convenience:

Eb = energy per information bit
Ec = R · Eb = energy per encoded bit
Es = M · Ec = RM · Eb = energy per modulation symbol.

The modulation symbols correspond to the AWGN channel uses. Of course,
Eb = Ec for uncoded signaling with R = 1, and Ec = Es for coded binary
modulation with M = 1.

With reference to Es/N0 there is a difference of 3 dB between 2-PSK and
4-PSK, with reference to Eb/N0 the uncoded symbol-error rates of both modu-
lation schemes only differ by a factor of 2 because

Ps,4−PSK ≈ 2 ·Q
(√

2Ec

N0

)
= 2 · Ps,2−PSK. (2.4.13)

The reason for this is fairly simple. Since the inphase and quadrature phase
of 4-PSK are statistically independent, one 4-PSK signal is equivalent to two
consecutive 2-PSK signals. The bit-error rates Pb of 2-PSK and 4-PSK are
actually identical in reference to Ec/N0 as will now become clear.

2.4.6 Gray Code Mapping

The relation between the symbol-error rate Ps and the bit-error rate Pb for an
arbitrary 2M -ary modulation scheme is

Ps

M
≤ Pb ≤ Ps, (2.4.14)

since an incorrect demodulation of the symbol results in between 1 and M bit
errors. Usually M/2 bits are affected in the case of a symbol error [128], so that

Pb ≈ 1

2
· Ps (general mapping). (2.4.15)

However, the mapping of the M bits to the 2M possible modulation symbols may
be done in a number of ways. The best assignment is a widely-used mapping
known asGray coding [114, 127], where adjacent points in the signal constellation
only differ in one bit. The Gray code mapping can be applied to all ASK, PSK
and QAM signal constellations, and is demonstrated for the examples of 8-PSK
and 16-QAM in Figure 2.12 and for 8-ASK in Figure 10.10.

For Gray code mapping at large signal-to-noise ratios, we can assume that
the most likely symbol errors are caused by the erroneous selection of an adjacent
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Figure 2.12. Gray code mappings for 8-PSK and 16-QAM

amplitude to the transmitted signal amplitude. In such a case, only a single bit
error occurs for the 2M -ary symbol, so that

Pb ≈ 1

M
· Ps (Gray code mapping). (2.4.16)

This approximation is also contained in the more general result (1.3.19), where
Pb = pe,abstract with q = 2 and Ps = pe,inner.

The exact performance curves for the bit-error rate Pb of uncoded PSK and
QAM with Gray code mapping (obtained by computer simulation, and for PSK
also listed in [127]) are shown in Figure 2.13, where the difference to the symbol-
error rate Ps (represented by the tight bounds from Figure 2.11) is actually about
a factor of M .

2.4.7 Spectral Efficiency

The comparisons of digital modulation schemes in Figures 2.10, 2.11 and 2.12
on the basis of the required signal-to-noise ratio, to achieve a specified error
rate, are interesting and reflect all essential aspects for the performance of a
modulation scheme. However, it is important to emphasize in particular the
very different throughput depending on the number of modulation levels in a
further comparison.

As in Chapter 1, let R be the code rate (in units of information bits per
encoded bit), rb be the information bit rate (in units of information bits per
second), and rs = rb/(RM) be the symbol rate or baud rate (in units of 2M -ary
modulation symbols per second) according to (1.4.6). The ratio rb/W = RM ·
rs/W of the information bit rate to the bandwidth is called spectral efficiency,
spectral bit rate or bandwidth efficiency in units of information bits per second
per Hertz (see also Definition 3.5). Assume the minimum Nyquist bandwidth,
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then (2.2.19) implies that

rb
W

=

{
2M for baseband channels
M for passband channels

}
(2.4.17)

in case of uncoded signaling with R = 1.

A compact and meaningful comparison of different digital modulation
schemes could be based on the spectral efficiency or simply on M versus the
signal-to-noise ratio Eb/N0 which is required to achieve a given bit-error rate.
Such a representation is given in the next chapter in Figure 3.11 together with
the Shannon capacity boundary. Yet, QAM still proves to be more efficient than
PSK: for equal Eb/N0, QAM provides higher spectral efficiency, and for equal
spectral efficiency and equal symbol-error rate QAM requires less Eb/N0 than
PSK. However, a practical disadvantage of QAM is that it reacts much more
sensitively to non-linearities in the transmitter and receiver amplifiers than PSK
does. The considerations on spectral efficiencies will be continued in Subsection
3.5.2 as well as in Chapter 11.
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2.5 Asymptotic Coding Gains for 2M-ary

Modulation Schemes

2.5.1 Uncoded Signaling

In the previous section we discussed symbol-error rates and bit-error rates. Par-
ticularly for higher error probabilities, say Ps > 10−5, it is not only the distance
and the number of the nearest neighbours which are important, but also the
neighbours which are a little further away.

In this section we will inspect the asymptotic differences in Es/N0 as
Es/N0 → ∞. This corresponds to a situation with very small error proba-
bilities, say Ps < 10−5. The asymptotic behaviour is exclusively determined by
the distance of the nearest neighbour to the transmitted signal and therefore
solely by the value of the minimum Euclidean distance ∆0. For QAM the outer
decision regions are unlimited in one or two directions and for PSK the decision
regions have the form of unlimited sectors, but asymptotically this is of no im-
portance. Moreover, the exact results, the tight bounds and the weak bounds
are asymptotically identical.

If an arbitrary modulation scheme (denoted by the index “mod” in the fol-
lowing) is to attain the same error rate as 2-PSK, then asymptotically, according
to the last row in Table 2.2, as Es/N0 →∞

exp

(
−∆2

0,mod

4

(
Es

N0

)
mod

)
= exp

(
−
(
Es

N0

)
2−PSK

)
.

Thus for the necessary additional Es/N0 in comparison to 2-PSK, expressed in
decibels, (

Es

N0

)
mod

−
(
Es

N0

)
2−PSK

= 10 · log10
(

4

∆2
0,mod

)
dB. (2.5.1)

These values are shown in Figure 2.14. Similarly, for Ec/N0, and shown in Figure
2.15, (

Ec

N0

)
mod

−
(
Ec

N0

)
2−PSK

= 10 · log10
(

4

M ·∆2
0,mod

)
dB. (2.5.2)

Obviously, a linear increase of the spectral efficiency M also calls for an approx-
imate linear increase of Es/N0. An increase of the spectral efficiency M by 1
bit/s/Hz with a fixed symbol-error rate can be compensated for by increasing
Es/N0 by a factor of about
• 4 (corresponds to 6 dB) for PSK and ASK, or
• 2 (corresponds to 3 dB) for QAM.
The values in Figures 2.14 and 2.15 can also be approximately derived from
Figures 2.10 and 2.11 at Ps = 10−10 as well as from Figure 3.11 with the relation
Es = M · Ec for the uncoded transmission we are considering here.



80 2. Digital Passband Modulation over AWGN Channels

2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

 2M−ary modulation

A
dd

iti
on

al
 a

sy
m

pt
ot

ic
  E

s [d
B

] c
om

pa
re

d 
to

 2
−

P
S

K

ASK

PSK

QAM

3.01

10.00

13.01

16.23

19.14

22.30

8.34

14.20

20.17

26.18

32.20

38.22

6.99

13.22

19.29

25.33

31.35

37.37

43.39

Figure 2.14. Additional Es/N0 [dB] required for 2M -ary modulation compared to
binary modulation (asymptotically for Es/N0 →∞)

2.5.2 Coded Signaling

We will now extend the considerations on asymptotic coding gains for binary
communication in Section 1.7 to 2M -ary modulation methods.

First, we assume hard-decision demodulation. Except for asymptotically un-
interesting factors, the bit-error or symbol-error probability after demodulation
(and thus prior to decoding) is, according to Table 2.2,

pe = const ·Q


√

∆2
0Es

2N0


 , (2.5.3)

where Es = RM · Eb. The result (1.3.15) for the binary case is again obtained
from (2.5.3) by applying ∆0 = 2, M = 1 and Ec = REb. Now we insert pe from
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Figure 2.15. Additional Ec/N0 [dB] required for 2M -ary modulation compared to
binary modulation (asymptotically for Ec/N0 →∞)

(2.5.3) in equation (1.7.5) to obtain the post-decoding word-error probability Pw

Pw = const · pt+1
e (2.5.4)

= const ·Q

√∆2

0(t+ 1)

2
· Es

N0


 (2.5.5)

= const ·Q

√∆2

0(t+ 1)RM

2
· Eb

N0


 , (2.5.6)

where t = �(dmin − 1)/2�. Thus the asymptotic coding gain for hard decisions,
defined as the asymptotic gap between coded 2M -ary and uncoded 2M -ary mod-
ulation, with respect to Eb/N0, is independent of M :

Ga,hard = 10 · log10((t+ 1)R) dB. (2.5.7)

The asymptotic coding gain, with respect to Es/N0, is additionally also inde-
pendent of R:

G∗
a,hard = 10 · log10(t+ 1) dB. (2.5.8)
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For soft-decision demodulation t+1 is to be replaced by dmin. For completeness,
note that for the convolutional codes introduced in Chapters 9 and 10 t + 1 in
(2.5.7) and (2.5.8) have to be replaced by df/2 for hard decisions and df for soft
decisions (see Theorem 10.1).

These asymptotic relations are summarized in Figure 2.16. The differences
between coded and uncoded signaling are independent of M . Of course, the dif-
ference between binary and high-level modulation schemes depends considerably
on M and the curves for 2M -ary modulation shift to the right for increasing M .
However, Subsection 10.3.3 will show that coded 2M -ary modulation performs
much better in practice for relevant error rates than suggested by the asymp-
totic gaps, i.e., the curve for coded 2M -ary modulation shifts a little to the left
in Figure 2.16.
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Finally, the gap between 2M -ary coded modulation and uncoded BPSK is
10 · log10(M∆2

0 · (t + 1)R/4) in decibels with respect to Eb/N0. This value can
also be negative for high-level modulation and weak coding schemes, in which
case, in contrast to Figure 2.16, the graph for uncoded BPSK lies to the left of
the graph for coded 2M -ary modulation.

Example 2.2. Let us consider a transmission with 16-QAM and a symbol-
error rate of Ps = 10−8 to illustrate the relations in Figure 2.16. For uncoded
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16-QAM transmission we obtain about Eb/N0 = 16.0 dB according to Figure
2.13. Uncoded BPSK requires Eb/N0 = 12.0 dB according to Table 1.1, so there
is a difference of about 4.0 dB between uncoded BPSK and uncoded 16-QAM,
which corresponds nicely to the value of 3.98 dB in Figure 2.15.

We will now assume a coding scheme with rate R = 1/2 and a coding
gain of Ga = 6.2 dB with reference to Eb/N0 at Ps = 10−8 for soft-decision
demodulation. For a realistic example we refer to the convolutional code with a
memory length of m = 6 in Figure 10.7, where the application of coding reduces
the required Eb/N0 from 12.0 dB to 5.8 dB for BPSK. According to Figure 2.16,
coding for 16-QAM again saves 6.2 dB and we expect the required Eb/N0 to be
reduced from 16.0 dB to 9.8 dB. However, as we will see in Subsection 10.3.3,
only about 8.5 dB ?????? are required. �

In contrast to the comparison between coded and uncoded transmission for
identical modulation schemes, which should be made with reference to Eb/N0,
the comparison for trellis coded modulation (TCM), as discussed in Chapter
11, can also be made with reference to Es/N0, since the coding incorporated
with TCM neither changes the symbol rate and thus the bandwidth nor the
throughput defined by the information bit rate rb.

2.6 Summary of the Most Important

Parameters for Coded AWGN Channels

The most important parameters describing a coded transmission over the AWGN
channel including its physical units are summarized in Table 2.3. For complete-
ness the channel capacity is also mentioned in Table 2.3, which will be introduced
in the following Chapter.

The most important relations between the parameters in Table 2.3 are reca-
pitulated below. For the code rate and the rates of the information bits, encoded
bits and modulation or channel symbols,

R =
k

n
, Rq = R · log2 q, RM = RM, (2.6.1)

rc =
rb
R
, rs =

rc
M

=
rb

RM
=

1

Ts
. (2.6.2)

For the minimum Nyquist bandwidth W , attained for a rolloff factor of α = 0,

W =

{
rs/2 baseband channel
rs passband channel

}
. (2.6.3)

In more detail, the transmitted signal is restricted to frequencies f defined by{ |f | < W = rs/2 baseband channel
|f ± fc| < W/2 = rs/2 passband channel

}
. (2.6.4)
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Table 2.3. Important parameters of coded AWGN channels and their units

Parameter Name Physical units
R code rate info bit/encoded bit
Rq code rate info bit/q-ary encoded symbol
RM code rate info bit/2M -ary modulation symbol
rb info bit rate (throughput) info bit/second
rc encoded bit rate encoded bit/second
rs symbol rate (baud rate) 2M -ary modulation symbol/second
Ts symbol duration second
W bandwidth Hertz
rb/W spectral efficiency info bit/second/Hertz
Eb energy per information bit Joule = Watt·second
Ec energy per encoded bit Joule
Es energy per mod.symbol Joule
S signal power Watt
N0 one-sided noise power density Joule = Watt/Hertz
N noise power Watt
C channel capacity info bit/(2M or q)-ary symbol
C∗ channel capacity info bit/second
C∗/W capacity boundary on rb/W info bit/second/Hertz

For the spectral efficiency of 2M -ary modulation,

rb
W

= RM · rs
W

=

{
2RM baseband channel
RM passband channel

}
. (2.6.5)

We assume the AWGN channel with y = x+ ν. For the signal energy,

Ec = R · Eb, Es = E(|x|2) = M · Ec = RM · Eb, (2.6.6)

and for the signal power

S = Es · rs = Ec · rc = Eb · rb, (2.6.7)

which are valid both for baseband and passband channels. For the noise energy,
E(ν2) = N0/2 for baseband signaling and E(|ν|2) = E(|νI |2) + E(|νQ|2) =
N0/2 +N0/2 = N0 for passband signaling. For the noise power,

N = N0 ·W =

{
N0 · rs/2 baseband channel
N0 · rs passband channel

}
, (2.6.8)

and for the signal-to-noise ratio

S

N
=

E(|x|2)
E(|ν|2) =

{
2 · Es/N0 baseband channel

Es/N0 passband channel

}
. (2.6.9)

In Chapter 3, we will introduce the channel capacity, and we have the relation
C∗ = C · rs for the connection between the reference to seconds and to 2M -
ary modulation symbols. The corresponding relation is rb = RM · rs. The
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Shannon Noisy Channel Coding Theorem 3.1 and the Shannon-Hartley Theorem
3.5 provide the boundaries RM < C and rb < C∗ for the maximum code rate and
the maximum throughput. The Shannon-Hartley Theorem 3.5 together with

rb
W

<
C∗

W
= log2

(
1 +

S

N

)
(2.6.10)

provides us with a capacity boundary for the spectral efficiency.

2.7 Problems

2.1. Derive the matched filter for the baseband AWGN channel: let hTx(t)
be the transmitter filter and hRx(t) be the receiver filter. Prove that
the received signal-to-noise energy takes on its maximum if hRx(t) =
hTx(−t). Hint: apply Schwarz’s inequality as stated in (A.1.9).

2.2. Show that the path loss for a C-band (6 GHz) link of a synchronous
altitude satellite is about 200 dB.

2.3. Consider a microwave line-of-sight link for a wireless broadband access
system. The carrier frequency is 26 GHz with rain fading of 5 dB per
km, the symbol rate is 20 Msample/s, and the range is 4 km. Assume a
base station with a transmit power of 20 dBm and an antenna gain of
17 dBi (45 degree sectorization) and a link margin of 3 dB.

Which diameter of a parabolic antenna at the fixed terminal station
(assume an antenna efficiency of 0.5 and a noise figure of 8 dB) is required
to guarantee a bit-error rate of 10−10 in the case of uncoded binary PSK?
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