
Chapter 1

Introduction to Coded Digital
Communications

The basics of error-control coding (or also called channel coding) and the princi-
pal characteristics of transmission channels are the subject of this introductory
chapter. We start with a description of the key role and the fundamental rele-
vance of coding for digital communication systems, and list some of the many
applications for which error-control coding is of advantageous. An overview of
the elements of typical communication systems is given, focusing on the stochas-
tic description of discrete transmission channels including memoryless channels
and the additive white Gaussian noise channel. The principles of error-control
coding are introduced with block codes as one of the two major classes of channel
codes. The chapter continues with the properties of Hamming distances and the
minimum distance of a block code. The maximum-likelihood decoding rule for
optimum receivers is deduced for the general discrete channel as well as for hard-
and soft-decision decoding. The asymptotic coding gain is an important per-
formance measure of a code. Finally, the fundamental concept of error-control
coding is illustrated by a comparison to the basic principle of quantization for
digital transmission.

1.1 Coding for Reliable Digital Transmission

and Storage

The founder of the modern information and coding theory is Claude E. Shannon,
who published two famous, pioneering papers entitled A Mathematical Theory
of Communication and Communication Theory of Secrecy Systems in 1948 and
1949 in the Bell Systems Technical Journal, a reprint of which can be found
in [129, 130]. More than half a century later, the Shannon information theory
is still the foundation discipline for communication systems and determines the
way we think of digital signaling with regard to a secure, reliable and efficient
transmission.
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The data sources as well as the transmission channels are described by
stochastic models. A mathematical measure of information, the entropy, as-
signs a certain information content to each message. This enables us to deter-
mine the minimum number of symbols necessary for an error-free representation
of the message. Each longer message with the same amount of information con-
tains redundancy. The information theory relates the information content of a
message to the information-carrying ability of the transmission channel, where
the performance is defined in terms of error probabilities. Basically, coding is
the mapping of a message to a set or sequence of symbols. Shannon’s theory
comprises three different types of coding:

Source coding. The source information stream is compressed so that no or
only less significant information is lost, enabling a perfect or almost perfect
restoration of the information. One advantage being that fewer symbols
have to be transmitted. Thus, source coding eliminates superfluous and
uncontrolled redundancy and reduces the load on the transmission system.

Error-control coding (also called channel coding). Error-control coding of-
fers methods to transmit information from a source to a sink with a minimum
of errors, in conjunction with lower transmit power and perhaps even less
bandwidth. On the transmitter side, redundancy is added to the actual in-
formation in a controlled fashion (either as additional parity-check symbols
or by expanding the modulation alphabet), so that the receiver can detect
and correct the transmission errors. This guarantees high reliability of the
transmitted information. Furthermore, it is possible to cancel out the effect
of interference from external sources which could not be achieved by simply
increasing the transmit power.

Secrecy coding (also called cryptography). The information is encrypted
to make it unreadable to unauthorized persons or to avoid falsification or
deception during transmission. For channel coding the messages are to re-
main readable even in the case of interference, however, for secrecy coding
the encrypted messages are to be unreadable without the knowledge of the
key even in the case of perfect transmission.

This book describes error-control coding schemes in connection with digi-
tal communications and modern modulation methods while observing the ele-
mentary bounds and potentialities for reliable communication described by the
Shannon information theory.

Since 1948, error-control coding has developed into an application oriented
science, mainly influenced by the interaction of theory and practice. Many mod-
ern digital communication systems (such as mobile radio, modems for copper
lines, high-rate access systems or deep-space satellites) only achieve their enor-
mous performance by using error-control coding, especially for channels subject
to interference or where high reliability is an important issue. A special form
of transmission (from here to there) are mass-storage applications (from now to
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later), since noise and interference, similar to that during transmission, are pos-
sible during write (input) and read (output) operations. Efficient storage media
with very low error-rate requirements also require error-control mechanisms.

Error-control coding is not only of practical importance, but also a very inter-
esting science for those interested in communications and information engineer-
ing as well as for mathematicians, because the coding schemes, the algorithms
and the Shannon information theory are based on a challenging and complex but
elegant theory. This could be highlighted by some important key words, includ-
ing the basics of communication systems; digital modulation schemes; protocols
for IP and ATM packet data services; probability theory, stochastics and power
spectral densities; matrices and vector spaces; the algebra of finite fields, princi-
pal ideal rings and polynomial rings; Fourier transforms on Galois fields; special
metrics (including Hamming distance, Viterbi metric and a so-called soft alge-
bra); the analysis and synthesis of shift registers; finite state machines; trellis
diagrams; efficient algorithms and structures.

In the aforementioned paper from 1948, Shannon proved that each channel
is described by a numerical parameter called channel capacity . By using channel
coding, arbitrary small error rates can be guaranteed if the data rate is smaller
than the channel capacity and the required processing complexity in the trans-
mitter and receiver is small enough to allow a reasonable implementation. So
the channel properties do not restrict the quality of the transmission, but only
the throughput.

However, the Shannon information theory only proves the existence of pow-
erful codes, but does not provide any practical rules for the construction. In the
years following 1948, no one actually managed to find the theoretically predicted
codes in practice, however, at that time technology was not sufficiently advanced
to allow the realization of very complex coding schemes. After a period of disil-
lusionment about the value of information theory further research concentrated
on finding codes that were at least realizable, even if they did not reach the
information theoretical bounds. The main objective was the improvement of
coded over uncoded transmission, especially with regard to the reduction of the
error rate or of the transmit power.

Meanwhile a multitude of special codes have been found and analyzed. How-
ever, only few codes are of great practical importance. These include the RS
and BCH block codes, for instance, as well as some relatively simple convolu-
tional codes, all of which will be primarily discussed here. The technique of
concatenating codes and powerful algorithms for decoding have at least reduced
the gap between coding schemes which allow a reasonable implementation and
the bounds predicted by the Shannon information theory.

There are two main classes of codes, block codes (BC, Chapters 1 to 8) and
convolutional codes (CC, Chapters 9 and 10). Both classes will turn out to be
completely different in theory and practice. As in all other textbooks, the block
codes are described at the beginning, as they help to explain a lot of elementary
topics (Chapter 1) as well as the Shannon information theory (Chapter 3). For
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the latter, only little knowledge of block codes as presented in Chapter 1 is
needed, in contrast to the RS and BCH block codes (Chapter 8) which have
a very complex mathematical structure (Chapter 7). The interaction of error-
control coding and details of the transmission system will become clearer with
the discussion of convolutional codes which will follow.

Block codes and convolutional codes together with simple modulation
schemes could be called the classic error-control techniques. The redundancy
added during encoding increases the data rate, so that the transmission channel
has to be used more often and more bandwidth is needed. However, this only pro-
vides power-efficient but not bandwidth-efficient transmission techniques. The
pioneering works of G.Ungerböck, known as TCM (Trellis Coded Modulation,
see Chapter 11) since 1982, allow a power-efficient transmission without having
to increase the bandwidth. By using TCM the error rate and the required trans-
mit power (and in extreme cases even the required bandwidth) can be reduced.
TCM is primarily based on convolutional codes, but also partly on block codes.

There are two basic principles of error-control coding which depend on the
requirements of the tolerable end-to-end delay and whether a feedback channel
for the reverse direction is available:

Forward Error Correction (FEC). The redundancy added in the transmit-
ter is used to correct transmission errors in the receiver. As error-correction
codes (ECC), block codes and convolutional codes as well as trellis coded
modulation are used. Later on, we will show that convolutional codes and
the TCM technique should better be referred to as transmission codes.

Automatic Repeat Request (ARQ). Little redundancy is added in the
transmitter, as the receiver only uses an error-detection code (EDC) to de-
tect but not to correct transmission errors. If errors are detected, a request
is issued via the feedback channel in the reverse direction to either repeat
the message or to add further redundancy to the message. Almost always
block codes are used for error detection. However, there must be sufficient
end-to-end time available and a reliable feedback channel in the reverse di-
rection.

The advantage of ARQ is that for error detection less redundancy has to be
transmitted than for error correction. However, if messages have to be trans-
mitted repeatedly the delay can become quite large. Thus the throughput with
ARQ depends on the quality of the channel whereas the error rate does not.
These properties are reversed for forward error correction (presupposing a fixed
coding scheme), since the channel quality determines the error rate, but not the
throughput. FEC and ARQ techniques can also be combined, for example by
dimensioning the redundancy such that a small number of errors are correctable,
but that for a larger number of errors a retransmission is requested. In this book
we will primarily discuss FEC techniques, however, in Chapter 15? we also take
a look at ARQ techniques.
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The design of high-performance coding techniques should always be oriented
towards the specific constraints of a transmission system and especially to the
properties of the transmission channel. So specific applications require specific
codes. Some of the most important constraints which have to be considered for
the selection and optimization of a coded transmission system are

• the properties of the physical transmission channel (particularly the avail-
able bandwidth, the signal-to-noise ratio, and possible distortions or other
imperfections);

• the existing modulation scheme, if coding and modulation can not be opti-
mized jointly;

• the requirements for the error probability and the error structure after de-
coding (the difference between single random errors and burst errors could
be relevant);

• the available transmit power (where limitations could be required to sim-
plify the power amplifier, to extend the battery lifetime in case of mobile
terminals, or to minimize the interference to other systems);

• the acceptable delay caused by error-control coding (where the delay can
be measured with regards to time or symbols, also the difference between a
continuous data stream and individually transmitted data packets could be
relevant);

• the bounds on the complexity of the signal processing in transmitter and
receiver (also including requirements for synchronization)

as well as many other requirements. All this results in a quite complex task
with different individual solutions depending on the weighting of the various
constraints. The following listing provides an overview of the various applica-
tions and features of error-control coding.

• To save transmit power, for example if the physical channel has near ideal
AWGN characteristics, which leads to statistically independent random sin-
gle errors. Typical applications are geostationary communication satellites
and especially deep space research satellites (see Section 16.1?).

• To save bandwidth by making sure that the redundancy added by encoding
does not cause more symbols to be transmitted, but uses symbols from an
increased modulation alphabet. An important application are modems for
telephone channels including copper subscriber lines (see Section 16.2?).

• To provide both power-efficient and bandwidth-efficient communication, this
is especially requested for digital mobile radio (see Sections 16.3?, 16.4?).
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• For time-variant channels, if there are typically good and bad parts within
a single codeword and if the receiver can estimate the current signal quality
well enough. A typical application is mobile radio, where fading events can
occur that are short compared to the block length of a codeword and long
compared to the symbol duration.

• For channels with burst errors which typically occur for mass-storage appli-
cations like compact discs (see Section 16.6?) or for magnetic recording.

• For very high reliability as required for the data exchange in computer net-
works, for electronic financial transfers between banks, for safety-relevant
services like remote control of railway networks, or generally for high-
compressed data. High reliability often occurs in conjunction with high
security, so error-control coding as well as secrecy codes are required.

• For source coding schemes generating symbols with different demands on
error protection. A typical example are speech coders used in mobile radio,
where the bits in a speech frame are of different relevance for the human ear
(unequal error protection, see Subsection 9.3.3 and Sections 16.3?, 16.4?).

• For error detection instead of error correction. In combination with source
coding of speech and music, error concealment techniques are also used to
enhance the quality impression.

• In combination with ARQ techniques as explained above.

• For those interferences which can not be reduced by increasing the transmit
power, for example interference from adjacent channels, click noise, slow and
fast fading, multipath propagation and linear and non-linear distortions.

• To realize higher system capacity by adaptive modulation and coding and
better statistical multiplex gains in fixed wireless cellular access systems
based on point-to-multipoint architectures (see Section 16.?).

• To reduce the error floor, which occurs in transmitters and receivers which
are not perfect, for example due to non-linearities (see Section 16.5?).

1.2 Elements of Digital Communication

Systems

1.2.1 Basic Elements and Principles

The basic principle of a digital transmission system with source coding and
error-control coding is shown in Figure 1.1. As mentioned above, first source
coding eliminates redundancy and then error-control coding adds redundancy in
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Figure 1.1. A digital communication system with source and channel coding

a controlled manner. Redundancy which may already be in the source data is
useless for error-control coding, since the properties of this redundancy are not
exactly controllable. The source data may even have no redundancy at all.

According to the Shannon information theory [129, 130] introduced in Chap-
ter 3, source coding and error-control coding can be executed and optimized
separately as shown in Figure 1.1, this is also called the separation principle.
However, bounds on the transmission delay (also called latency) or on the pro-
cessing complexity or other practical constraints can require the coordination
and joint optimization of source coding and error-control coding (for further de-
tailed considerations of this specific issue see Subsection 9.3.2 on RCPC codes
and Sections 16.3? and 16.4? on source-channel coding for mobile radio).

Each encoder operation has a corresponding decoder operation as its coun-
terpart. The term coder is not used. Encryption, which is not listed in Figure
1.1 but included in Figure 1.2, is usually placed between the source coding and
the error-control coding. In the following, source coding and encryption will be
ignored so that error-control coding could be addressed as coding.

The symbols u are called information symbols or, for the binary case, infor-
mation bits. The names source symbols or source bits are also quite common.
The encoder transforms the information symbols or information bits u into the
encoded symbols or encoded bits a and adds redundancy which increases the data
rate.

The encoder is connected to the waveform channel (there are also many
other names like physical channel, continuous channel, transmission channel,
analog channel) by the modulator . The waveform channel can not transmit any
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discrete-time symbols but only continuous-time signals. Thus, the modulator’s
function is to assign such signals to the discrete values a, which can then be
transmitted over the waveform channel. It also adapts the modulated signal
to the frequency range of the waveform channel, and in particular shifts the
baseband signal into the passband frequency range. However, for the technique
of trellis coded modulation (TCM, see Chapter 11) it is not necessary to split
the transmitter into an encoder and a separated modulator as shown in Figure
1.1.

The waveform channel generally does not behave ideally; the signals are
altered, disturbed and deteriorated during the transmission. This applies for all
types of transmission channels, including
• cables (e.g., subscriber line, coax cable or fiber),
• terrestrial radio channels (e.g., mobile communications, microwave line-of-

sight radio, broadcast radio or short-wave radio),
• geostationary or deep-space satellite links,
• mass storage systems as a specific form of information transmission (e.g.,

magnetic recording, electronic or optical devices)

as well as for any combination of these channels. The waveform channel is char-
acterized, for example, by thermal noise, by intersymbol interference and mul-
tipath radio propagation, by fading effects, by co-channel and adjacent-channel
interference, by linear or non-linear amplitude and phase distortions, by atmo-
spheric effects, as well as by deliberate or hostile interference (jamming).

So the demodulator does not receive the exact transmitted continuous-time
signals, but only corrupted versions of them. However, the receiver should still
be able to reconstruct the transmitted discrete-time information symbols from
the received signal. In the demodulator the baseband signal is first reconstructed
from the received passband signal, this includes carrier, phase and clock syn-
chronization for coherent receivers. From the baseband signal a sequence of
discrete-time symbols is derived, which we refer to as received symbols y, so that
each y exactly corresponds to one transmitted symbol a. It is not necessarily
the case that the ranges of y and a are identical. In case of soft-decision demod-
ulation the demodulator is to produce values y which are to contain as much
information as possible for the decoder. Hence, for example, a combination of
binary a and real-valued y can be reasonable.

The decoder operates on the discrete-time symbols y which may be
continuous-valued or discrete-valued to derive estimations û for the transmit-
ted information symbols u. This estimation process generally causes a decoding
delay , in particular, since the decoder should work ideally on very long sym-
bol sequences, i.e., after receiving a whole sequence of received values, a whole
sequence of information symbols is estimated in one step.

The modulator and the demodulator only handle individual separated sym-
bols and know nothing of the properties of the channel encoder nor of the
properties of whole symbol sequences, in other words the modulator and the
demodulator are memoryless. In contrast, the encoder introduces memory to
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the transmit signal and the decoder uses this memory for its task to derive best
possible estimations.

1.2.2 Further Details of Mapping and Modulation

A digital transmission system should be designed according to the expected
properties of the waveform channel to achieve an optimum performance of the
entire system. Therefore we will not only discuss the design and the analysis
of error-control codes but also the modeling of waveform channels and discrete
channels.

Between the pair encoder-decoder and the transmission channel in Figure
1.2, we have now placed the pair mapping-demapping. In contrast to the ab-
stract communication model shown in Figure 1.1, we will now elaborate on fur-
ther important details, particularly the relation between modulation and coding
schemes for a typical digital wireless passband transmission system. Also we
compare the size of the range of symbols used by the encoder to the size of the
modulation alphabet.
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Figure 1.2. A detailed block diagram for a typical wireless digital transmission

As in Figure 1.1, the transmitter branch in Figure 1.2 contains the source
encoder and the channel encoder, however, with the encryption operation added.
The following mapping is discussed further below in this subsection. The pulse
shaping and transmit filter are represented by the block TX filter and are as-
sumed to take place in the digital domain prior to the digital-to-analog conver-
sion (DAC). The transmitter filter converts a symbol stream into a continuous-
time signal, this is explained in detail in Subsection 2.2.1. By multiplication
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with exp(−j2πfct) the modulator shifts the frequency from the baseband do-
main to the passband domain centered around the carrier frequency fc. Finally,
the power amplifier (PA) generates the desired level of the signal which is then
finally radiated from the transmit antenna.

In case of passband transmission the equivalent baseband signal is usu-
ally complex-valued. A complex-valued signal can also be described by a 2-
dimensional real-valued signal, but the formal description is simplified by the
complex notation. In Figure 1.2, the complex-valued (2-dimensional) sym-
bols and signals are represented by double arrows, whereas real-valued (1-
dimensional) symbols and signals are represented by single arrows. More details
of passband transmitters and receivers are shown in Figure 2.2. A compact but
serious introduction to passband modulation schemes is given in Chapter 2 and
comprehensive and detailed introductions can be found in almost every textbook
on digital communications, e.g., [114].

In the receiver path, the signal from the receiver antenna is passed to the
low-noise amplifier (LNA). Due to basic physical principles it is inevitable that
the LNA adds unwanted thermal noise to the received signal, this noise is rep-
resented very accurately by the additive white Gaussian noise (AWGN) channel
model, which is introduced in Subsection 1.3.3 for baseband signaling and in
Chapter 2 for passband signaling. The AWGN channel is of supreme importance
for digital communications in general. By multiplication with exp(+j2πfct) the
demodulator shifts the frequency from the passband domain back to the base-
band domain. After analog-to-digital conversion (ADC), the baseband signal is
passed to the digital receiver filter (RX filter), which is correspondingly matched
to the transmitter filter as explained in Subsection 2.2.1 and also addressed in
Problem 2.1.

The demapping, the channel decoder, the decryption and the source decoder
are the corresponding counterparts to the transmitter path. The task of syn-
chronization is to find the correct carrier frequency and carrier phase (assuming
a coherent demodulator, see Subsection 2.2.1) and the correct sampling clock
which is at least required by the decision device, but maybe also required by the
ADC and the digital receiver filter, depending on the details of the implemen-
tation.

As can be seen by comparing Figures 1.1 and 1.2 the term modulator is
used in two different ways. One is the complex multiplication for the frequency
shift, the other comprises all elements between the mapping and the waveform
channel. The term demodulator is used equivalently.

The order of the elements in the transmitter and the receiver can also be
different than assumed in Figure 1.2. For example, the modulation operation
can be spread across multiple intermediate frequencies. The transition from the
digital to the analog domain can take place in the baseband domain, on one of
the intermediate frequencies or possibly in the passband domain. In real systems
filter operations will be used at almost any stage, particularly after the DAC in
the transmitter and before the ADC in the receiver, which is not explicitly shown
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in Figure 1.2. The transition from discrete-valued and discrete-time symbols to
continuous-valued and continuous-time waveforms in the transmitter takes place
during the DAC at the latest. However, the transition could also be understood
as taking place in the transmitter filter, see also Figure 2.2 and the introduction
to baseband and passband signaling in Section 2.2.

The arched arrow in Figure 1.2 implies a reverse channel via which the
receiver can request the transmitter to repeat the whole message or simply parts
of it. Such methods are called automatic repeat request (ARQ) and are usually
placed between encryption and channel encoder as shown in the figure. ARQ
schemes are covered in Chapter 15?.

Let us take a look at the mapping, the decision device und the demapping,
the parts of Figure 1.2 which are the most interesting in this context. We will
see that the input and output symbols of the channel encoder as well as the
output symbols of the decoder are selected from a finite alphabet, which will
turn out to be a finite field or Galois field denoted Fq with the cardinality of

|Fq| = q = pm. (1.2.1)

The Galois fields will be introduced in Chapter 4 and discussed in detail in
Chapter 7. The field Fq is the range for the information symbols u, for the
encoded symbols a = x and for the estimated information symbols û, hence
u, a, û are all q-ary. There are several cases to be considered:
• q = 2 is the simplest case of binary codes, where the symbols are simply bits.

In Chapters 1 to 5, although we consider only binary codes as examples, we
will develop the theory for the general case.

• q = pm is the general case, where p is prime and m is a non-negative integer.
We will have to wait until Chapter 7 to understand the background of this.

• q = 2m is the normal case for most codes, where the symbols are groups of
bits, for the important case of m = 8 the symbols are bytes.

The actual values within Fq are irrelevant, only the definition of the opera-
tions of addition and multiplication between the elements of Fq are important.
So it does not matter whether for F4 we use the set {0, 1, z, z2}, {A, α, 7, π} or
{00, 01, 10, 11}.

Throughout the entire book, the encoded symbols are denoted a as well as
x and Ain is often used instead of Fq. This may seem confusing at first, but
is very important, since we use a ∈ Fq to denote the symbols as the output of
the channel encoder, but x ∈ Ain to emphasize the input of the mapping. The
term Fq denotes the Galois field with q = pm, but Ain refers to a general q-ary
alphabet, however, without taking advantage of the special form of q = pm. So,

a = x ∈ Fq = Ain, y ∈ Aout,

|Ain| = q.
(1.2.2)
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The mapping assigns each q-ary encoded symbol x ∈ Fq of the Galois field to
a 2M -ary modulation symbol x̃ ∈ Amod of the modulation alphabet. In contrast
to the Fq-based operations in the encoder and the decoder, the digital transmit-
ter filter and the modulation that follows operate with real- or complex-valued
symbols and signals. Thus, the modulation alphabet Amod is a subset of the
real or complex numbers, depending on whether we are considering baseband
signaling (also called 1-dimensional signaling) or passband signaling (also called
2-dimensional signaling):

x̃ ∈ Amod ⊂ R or C, ỹ ∈ Adem ⊂ R or C,

|Amod| = 2M
(1.2.3)

After the decision device in the receiver branch we have the symbols ỹ ∈ Adem of
the demodulator alphabet, which are then assigned to the output symbols y ∈ Aout

by the demapping. Like Amod, Adem is also a subset of the real or complex
numbers. The 2M -ary modulation symbols of the alphabet Amod are called
encoded modulation symbols or simply symbols. Particularly for the trellis coded
modulation (TCM) introduced in Chapter 11, other terms such as signal point or
simply signal are used, then Amod is also called signal constellation. Throughout
the entire book we shall stick to |Amod| = 2M , only for TCM will we compare
uncoded 2M -ary to coded 2M+1-ary modulation schemes. Usually M is integer,
but there are some exotic modulation schemes where the number of modulation
levels is not a power of two, so we can include these cases by simply also allowing
non-integer values of M .

Example 1.1. Let us consider some examples of the mapping scheme for vari-
ous combinations of q and M .

(1) The simplest case is the full binary case where q = 2 (binary coding)
with F2 = Ain = {0, 1}, for example, and M = 1 (binary modulation) with
Amod = {+√Ec,−

√
Ec} ⊂ R, for example. For this example the mapping can

be described by the simple function

x ∈ Ain �→ x̃ = (2x− 1)
√

Ec ∈ Amod. (1.2.4)

(2) A binary channel encoder can be combined with a high-level modulation.
For example, if q = 2 and M = 5, then five consecutive bits of the channel
encoder are mapped to a 32-ary modulation symbol. The mapping reduces the
symbol rate (i.e., the number of modulation symbols per second) by a factor of
5.

(3) A realistic example would be the combination of q = 256 = 28 and
M = 2. For 4-PSK modulation (see Section 2.3) we could choose Amod =
{1, j,−1,−j} ⊂ C or as in Figure 2.5 Amod = {(1 + j)/

√
2, (−1 + j)/

√
2, (−1−

j)/
√
2, (1− j)/

√
2} ⊂ C, possibly both with an additional factor of

√
Ec which

will become clear in Subsection 1.3.3. Then a 256-ary symbol of the channel
encoder with 8 bit is mapped to four 4-PSK modulation symbols. Here, the
mapping increases the symbol rate by the factor 4.
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(4) Now consider the combination of q = 256 = 28 and M = 6. Three 256-
ary symbols of the channel encoder with 3 ·8 = 24 bit are mapped to four 64-ary
modulation symbols with 4 · 6 = 24 bit. The mapping increases the symbol rate
by the factor 4/3. �

So depending on the specific conditions, we either have q = 2M , q < 2M or
q > 2M . Thus the mapping can either not influence the symbol rate at all or
reduce or increase it by the factor (log2 q)/M . From now on the term symbol
rate rs shall always refer to the modulation symbols:

rs = number of 2M -ary modulation symbols per second (1.2.5)

=
log2 q

M
· number of q-ary encoded symbols per second (1.2.6)

=
1

Ts
. (1.2.7)

The symbol rate is also called the baud rate in units of “baud”, named after the
French engineer Baudot. This is the number of uses of the waveform channel per
second. The inverse of the symbol rate is equal to the duration Ts of a modulation
symbol, in other words, a symbol is transmitted once every Ts seconds. We refer
to Section 2.2 for more details on this issue.

1.2.3 Abstract and Inner Discrete Channel

The combination of all elements of the communication system between map-
ping and demapping including the pair mapping-demapping itself is called the
abstract discrete channel (abstract DC) with Ain and Aout as input and output
alphabets. Without the pair mapping-demapping it is referred to as the inner
discrete channel (inner DC) with Amod and Adem as input and output alpha-
bets. The choice of which channel model we use at any one time depends on our
objectives as follows.

Abstract DC with q-ary input. A general channel with arbitrary input and
output alphabets is assumed, its inner structure is completely ignored, which
can make it be completely different from the example of Figure 1.2. Without
considering the details of the transmission system, everything between the
output of the encoder and the input of the decoder is modeled as an abstract
black box. Then the discrete channel is only characterized by how the q-
ary input symbols x ∈ Ain are mapped to the output symbols y ∈ Aout.
In Subsection 1.3.1 we will describe this matter in detail with conditional
probabilities.

This abstract approach for the discrete channel is the foundation for Chap-
ters 4 to 8 and partially for Chapter 3, where we are interested in the de-
sign and the analysis of the performance of high-sophisticated error-control
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schemes, particularly in block codes and even more so in hard-decision de-
coders where Amod = Adem. Therefore it is appropriate to consider the pairs
mapping-demapping and modulator-demodulator as invisible parts of the
abstract discrete channel. The abstract DC is also called digital channel or
coding channel.

The generalized abstract discrete channel is mainly important for theoretical
considerations and for the derivation of principal concepts. However, according
to Figure 1.2, in the practice of data transmission systems, there usually is a
noisy channel, which is used with an especially selected modulation system. As
already mentioned, thermal noise is almost always modeled as an additive white
Gaussian noise (AWGN) channel.

Inner DC with a specific 2M -ary modulation system. A physical chan-
nel with a modulation system similar to that of Figure 1.2 is assumed and
the transmission path is modeled as an AWGN channel. The 2M -ary mod-
ulation alphabet Amod and also Adem are subsets of the real numbers for
baseband signaling or of the complex numbers for passband signaling.

This approach for the discrete channel based on the AWGN model is the
foundation for Chapters 2, 9, 10, 11 and partially for Chapter 3, and also
always if we are considering the joint optimization of error-control coding
and modulation schemes. Here the number of modulation levels as well as
the modulation scheme and in particular the pair mapping-demapping are
very important. Finally, it is important to distinguish between baseband
and passband signaling.

As already mentioned, it is irrelevant which elements represent the Galois field Fq,
only the definition of the algebraic operations between the elements is important.
Similarly, for the discrete channel only the statistical relationships between input
and output symbols are relevant, and at least for the abstract discrete channel
the alphabets as such are irrelevant. Of course for the AWGN channel these
statistical relationships depend on how Amod is selected as subset of R or C.

Ideally, for the AWGN channel there are usually continuous-valued symbols
at the input of the decision device in the receiver branch, which are, of course,
real- or complex-valued corresponding to Adem. However, after the ADC the
digital symbols are only of a limited amplitude resolution due to implementation
restrictions. For the function of the decision device and the demapping there
are two different cases to be distinguished:

Hard decisions. The continuous-valued input symbols are mapped to symbols
of the input alphabet Ain in the decision device, for example by using a hard
quantization operation. The objective is to make the input of the demapping
come as close to the output of the mapping as possible, i.e., as few errors as
possible are to occur. The demapping performs the exact inverse operation
to the mapping and again generates symbols of Fq. So,

Aout = Ain = Fq, Adem = Amod. (1.2.8)
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Ideal soft decisions. There is absolutely no quantization in the decision de-
vice, the extreme case is that the continuous-valued symbols are simply
passed on to the demapping. As mentioned in Subsection 1.2.1, it can be
useful that the decoder obtains as much channel state information as possi-
ble from the input y, whereas in the case of hard quantization in the decision
device useful information for the decoder might be lost. In the demapping
device the real- or complex-valued symbols (in case of baseband or pass-
band signaling) are simply passed on together with a possible symbol rate
conversion. So

|Adem| > |Amod| = 2M , Adem ⊆ R or C,
|Aout| > |Ain| = q, Aout ⊆ R or C.

(1.2.9)

For ideal soft-decisions even Adem and therefore also Aout could be continuous-
valued, ignoring for the moment the technical restrictions mentioned above, such
as, for example, a finite wordlength after the ADC. Of course, apart from this
case on the one hand and hard decisions with Aout = Fq on the other hand,
all cases in between are also possible. An important, illustrating example with
octal quantization is given in Subsection 1.3.5. By the way, in the case of ideal
soft decisions, the term decision device is obviously exaggerated, since its only
non-trivial operation is the sampling.

1.3 Discrete Channel Models

1.3.1 The Basic Concept of a Discrete Channel

As shown in Figure 1.3, the abstract discrete channel (abstract DC, also called
digital channel or coding channel) is the combination of the mapping, modula-
tor, waveform channel, demodulator and demapping. So the abstract DC formed
by the modulation system is quite general, it might contain very complex mod-
ulation and synchronization schemes as we saw in the previous section. In this
section we introduce a formal description of idealized discrete channels. To be
absolutely clear, the term “discrete” refers to discrete-time symbols, and not to
discrete-valued symbols.

The abstract discrete channel can be characterized formally by the triplet
(Ain,Aout, Py|x), where

(1) Ain is the input alphabet of size q.

(2) Aout is the output alphabet. As explained in Subsection 1.2.2 there are various
cases for the demodulator (i.e., for the decision device contained therein):

Hard decisions means that the demodulator estimates the transmitted sym-
bols a directly, hence Aout = Ain = Fq. This is the case for most block
codes, which are presented in Chapters 4 to 8 (with the exception of erasure
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x~ ∈ Amod

Abstract discrete channel

Figure 1.3. The discrete channel model as formed by the modulation system

decoding discussed in Section 8.6). The very simplest case of hard-decision
demodulation are binary discrete channels with Ain = Aout = F2 = {0, 1}.
Soft decisions means that Aout contains more values than Ain, for a
continuous-valued demodulator output we may even have Aout = R or C.
In many applications the demodulator can provide some information on the
current quality or state of the channel, including the quality of its own de-
cisions (see Section 10.?). For example, the demodulator tells the decoder
with which certainty it made its decisions; that can vary from very reliable
over uncertain to nearly random decisions. In principle, all coding schemes
can use this kind of information, however, it is mainly only of real use for
convolutional codes (see Chapters 9 to 11). A typical case is the combination
of a binary Ain = {0, 1} and an octal Aout, where the received symbols are
quantized with 3 bits (see Figures 1.8, 1.9, 3.3 and Subsection 10.2.3?)

(3) Py|x is the transition probability (also called channel statistic). The more
detailed term Py|x(η|ξ) denotes the conditional probability that y = η is
received if x = ξ was transmitted.

The input x and the output y of the discrete channel are assumed to be random
variables, their values are denoted as ξ ∈ Ain and η ∈ Aout. The simpler
denotation P (y|x) is used, if it is not important to distinguish between the
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random variables and their values. For the transition probability,∑
η∈Aout

Py|x(η|ξ) = 1 for all ξ ∈ Ain. (1.3.1)

The term inner discrete channel (inner DC) comprises the channel without
the pair mapping-demapping, where Amod and Adem take the place of input
and output alphabets. The formal description for the inner DC is the triplet
(Amod,Adem, Pỹ|x̃). If it is not required to distinguish between the input alphabet
and the modulation alphabet, we will omit the tilde in x̃ for the modulation
alphabet.

It is important to distinguish certain properties of discrete channels. Apart
from hard-decision and soft-decision demodulation, the properties of the channel
or the transmission system can be time-invariant or time-variant . The discrete
channel can also have memory (i.e., the received symbol does not only depend on
the last transmitted symbol, but also on previous symbols), or it is memoryless
(i.e., the received value only depends on the currently transmitted symbol).

Definition 1.1 (Discrete Memoryless Channel). A discrete memoryless
channel (DMC) is a memoryless and time-invariant discrete channel. The mem-
oryless property is characterized by the fact that the transition probability for
sequences factors into the product of the transition probabilities for the single
symbols:

P (y0, . . . , yn−1|x0, . . . , xn−1) =

n−1∏
i=0

P (yi|xi). (1.3.2)

We can actually consider the transition probabilities for sequences or blocks
for both the abstract DC and for the inner DC, since they are identical with

P (ỹ0, . . . , ỹñ−1|x̃0, . . . , x̃ñ−1) = P (y0, . . . , yn−1|x0, . . . , xn−1). (1.3.3)

For different lengths of the blocks of the symbols x and x̃, this equation is
still valid even if there is a symbol rate conversion in the mapping. If such
a symbol rate conversion does not take place, then firstly, the above equation
is also valid symbol-for-symbol, i.e., P (ỹ|x̃) = P (y|x). Secondly, the abstract
DC is memoryless if and only if the inner DC is memoryless, since in this case
the mapping does not have a memory and simply renames the alphabets. If
a symbol rate conversion is performed in the mapping, then the memoryless
relations become a little trickier. This case will be discussed in more detail in
Subsection 1.3.3.

In Chapters 1 to 5 we only consider discrete memoryless channels. Since
errors are statistically independent, these are also called random single errors
and the DMC is then called a random-single-error channel. In later chapters,
various other types of channels will be introduced: in Sections 6.6 and 6.7, in
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Chapter 8 and in Section 10.6?, channels with errors grouped into bursts will
be introduced, also called burst-error channels. In Section 10.7?, specific time-
variant channels are discussed which occur when decoding convolutional codes,
as well as super channels for concatenated coding. Fading channels which are
of great importance for modern applications as well as channels with intersym-
bol interference are introduced in Section 14.2?. Further types of channels are
described in Chapter 16?.

1.3.2 Discrete Memoryless Channels (DMC) with Hard

Decisions

If the transition probabilities for hard decisions fulfill certain symmetries, only
a single parameter is needed to characterize the DMC:

Definition 1.2 (Symmetric DMC with Hard Decisions). A q-ary sym-
metric channel with hard decisions is a DMC with Ain = Aout and the transition
probability

P (y|x) =
{

1− pe if y = x
pe/(q − 1) if y �= x

}
. (1.3.4)

This channel is uniquely defined by the DMC symbol-error probability pe. The
binary case with q = |Ain| = 2 is called a binary symmetric channel (BSC).

We often use Ain = Aout = {0, 1} for the alphabets of the BSC, however, it
is not the alphabets but the transition probabilities which are important. For
pe = 0 the symmetric DMC is error-free, but for pe = 1/2 we will prove in
Chapter 3 that a reliable transmission is absolutely impossible. If pe is variable,
the channel is time-variant. This situation will be discussed in detail in Section
10.7?. For the BSC, the equation (1.3.4) turns into

Py|x(0|0) = Py|x(1|1) = 1− pe
Py|x(1|0) = Py|x(0|1) = pe.

(1.3.5)

During transmission one bit is altered with the probability pe and is transmitted
correctly with the probability 1− pe:

P (y = x) = 1− pe
P (y �= x) = pe.

(1.3.6)

As a simple example, assume that 110 was transmitted, then 101 is received with
a probability of Py|x(101|110) = Py|x(1|1)Py|x(0|1)Py|x(1|0) = (1−pe)·pe ·pe. The
principle of the BSC is also shown on the left-hand side of Figure 1.4, where the
branches from x ∈ Ain to y ∈ Aout are labeled with the transition probabilities
P (y|x).

For the q-ary symmetric hard-decision DMC, we note the following impor-
tant formulas:



1.3 Discrete Channel Models 19

Ain Aout
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1–pe–qe
BSC

BSEC

?
pe

Figure 1.4. Transition probabilities for some discrete memoryless channels

(1) The function Pee (ee = error event) describes the probability of at least one
error occuring during the transmission of a sequence x = (x0, x1, . . . , xn−1)
of length n:

Pee = P (y �= x )

= 1− P (y = x )

= 1− P (y0 = x0, . . . , yn−1 = xn−1)

= 1− P (y0 = x0) · · ·P (yn−1 = xn−1)

= 1− (1− pe)
n (1.3.7)

≈ npe, if npe � 1. (1.3.8)

The approximation (1.3.8) is derived from the binomial expansion

(1− pe)
n =

n∑
i=0

(
n

i

)
(−pe)

i, (1.3.9)

see also (A.2.2) for the general binomial formula.

(2) The probability that a sequence of n symbols is altered into another specific
sequence, with l specific errors occuring in certain positions, is

P ( l specific errors in n symbols) =

(
pe

q − 1

)l
(1− pe)

n−l, (1.3.10)

since l specific errors each with probability pe/(q − 1) and n − l correct
transmissions with probability 1− pe must occur.

(3) The probability that a sequence of n symbols contains l arbitrary errors in
certain positions is

P ( l specific error positions in n symbols) = ple(1− pe)
n−l, (1.3.11)
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since l errors with probability pe and n− l correct transmissions with prob-
ability 1− pe must occur. This result can also be derived as follows. Since
there are q − 1 possibilities for a symbol error, the result (1.3.11) must be
equal to (1.3.10) multiplied by (q − 1)l. For the binary case with q = 2,
(1.3.10) and (1.3.11) are identical since an error position also determines the
error value.

(4) According to the binomial distribution (see Appendix A.4.1), the probability
of l errors in a sequence of n bits is:

P ( l arbitrary errors in n symbols) =

(
n

l

)
ple(1− pe)

n−l (1.3.12)

= b(n, l, pe). (1.3.13)

This is also implied by (1.3.11) since there are exactly

(
n

l

)
possibilities for

the l arbitrary error positions. Furthermore, note that

1 =

n∑
l=0

(
n

l

)
ple(1− pe)

n−l, (1.3.14)

which is obvious but can also be derived from the binomial formula (A.2.2)
or Subsection A.4.1.

A generalization of the BSC is the binary symmetric erasure channel (BSEC),
also shown in Figure 1.4, where the output is ternary with Aout = {0, ?, 1}. Here
the demodulator decides on the “value” ?, if the decision to 0 or 1 is vague. For
the decoder it is better to have no information on the transmitted bit rather than
to have information which is wrong half the time. The BSEC is the simplest
case of a discrete channel with soft decisions with

P (y|x) =



1− pe − qe for y = x
qe for y = ?
pe otherwise


 . (1.3.15)

Of course Py|x(0|x) + Py|x(?|x) + Py|x(1|x) = 1 for x ∈ Ain = {0, 1}. For qe = 0
a BSEC becomes a BSC, and for pe = 0 a BSEC becomes a pure binary erasure
channel (BEC).

1.3.3 Memoryless Relations between Abstract and
Inner DC

In Subsection 1.3.1, we had already mentioned that without a symbol rate con-
version in the mapping the simple equation P (ỹ|x̃) = P (y|x) is valid for the
transition probabilities and that the abstract DC is memoryless if and only if
the inner DC is memoryless.
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In this subsection we will consider symbol rate conversion in the mapping.
As in Figure 1.5, let pe,inner = P (ỹ �= x̃) and pe,abstract = P (y �= x) be the
symbol-error probabilities of the inner DC and the abstract DC, respectively, of
course, presupposing hard decisions. Firstly, we prerequisite log2 q as an integer
multiple of M or vice versa.

Mapping

Demapping

Inner
DC

Abstract DC

abstract,ep

inA∈x modA~ ∈x

demA~ ∈y
outA∈y

inner,ep

Figure 1.5. Symbol-error probabilities for inner and abstract discrete channel

(a) Suppose log2 q as a multiple of M or equal to M . Hence, the mapping
increases the symbol rate, and a single encoded symbol requires (log2 q)/M
subsequent modulation symbols for transmission. So an inner DMC also
implies an abstract DMC.

If for instance q = (2M)2 or equivalently (log2 q)/M = 2, then x ∈ Ain is
mapped to (x̃1, x̃2) ∈ A2

mod.

An encoded symbol is correctly received if and only if all of the correspond-
ing (log2 q)/M modulation symbols are correctly received. So, using the
memorylessness of the inner DC,

1− pe,abstract =
(
1− pe,inner

)(log2 q)/M

. (1.3.16)

For instance, this result is used in (8.1.25) and for the performance curves
in Subsections 8.1.5 and 8.2.4 with q = 32 . . . 256 and M = 1.

(b) Suppose M as a multiple of log2 q. Hence, the mapping decreases the symbol
rate, and M/ log2 q subsequent encoded symbols are carried by a single mod-
ulation symbol. In this case, an inner DMC only approximately implies the
memoryless property after the demapping, depending on the specific design
of the mapping.
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This becomes intelligible by considering an example: let 2M = q2 or equiv-
alently M/ log2 q = 2, then (x1, x2) ∈ A2

in is mapped to x̃ ∈ Amod. If
ỹ ∈ Adem is received incorrectly, then usually both y1 and y2 are wrong.
In other words, an inner DMC with random single errors implies burst er-
rors after the demapping and this causes a certain kind of memory for the
abstract DC, so the memoryless property does not result exactly.

However, for the opposite direction, if the abstract DC is memoryless then
so is the inner DC. A modulation symbol is correctly received if and only
if all of the corresponding M/ log2 q encoded symbols are correctly received.
So, supposing the abstract DC as memoryless,

1− pe,inner =
(
1− pe,abstract

)M/ log2 q

. (1.3.17)

The two equations (1.3.16) and (1.3.17) are equivalent and can be simply re-
written as (

1− pe,abstract

)M
=
(
1− pe,inner

)log2 q

. (1.3.18)

To make things easier, we can assume for many applications that (1.3.18) is
always approximately valid, even if there is no integer relationship between M
and log2 q. A further approximation as in (1.3.8) leads to the simple result

pe,abstract ≈ log2 q

M
· pe,inner. (1.3.19)

In Subsection 2.4.6 we will consider the relation between bit- and symbol error
rates and the approximation (2.4.16) will turn out to be a special case of (1.3.19).

However, all other details of the memoryless relations can be generally ig-
nored for most applications unless we explicitly refer to them in the following
chapters.

1.3.4 The Additive White Gaussian Noise (AWGN)
Channel

In this subsection a model of a memoryless channel with overwhelming impor-
tance for digital communication will be introduced. A reasonable simplification
and approximation for many applications is to assume that the physical channel
attenuates the transmitted signal and introduces thermal noise and also suffers
from co-channel and adjacent-channel interference originated from other com-
munication systems. The attenuation and the interference will not be discussed
in detail here. The noise is a fundamental barrier to communications, which may
be defined as a random disturbance introduced mainly by the transmitter and
receiver amplifiers and the propagation medium. The most commonly assumed
model for the noisy channel is the additive white Gaussian noise (AWGN) chan-
nel, defined in this subsection for baseband signaling (1-dimensional case) as a
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discrete-time channel. An extension of the AWGN channel to passband trans-
mission (2-dimensional case) as well as a derivation of the discrete-time models
from continuous-time reality is given in Chapter 2. A detailed and comprehen-
sive representation of the statistical properties of the Gaussian distribution (also
often called normal distribution) can be found in Appendix A.4.2 and A.4.3.

Definition 1.3 (Additive White Gaussian Noise). An additive white
Gaussian noise (AWGN) channel or simply Gaussian channel is a DMC
(Amod,Adem, Py|x) where the output y ∈ Adem = R is the sum of the input
x ∈ Amod and additive white Gaussian distributed noise denoted ν:

y = x+ ν. (1.3.20)

The two random variables x and ν are statistically independent with zero means.
The value Es = E(x2) = D2(x) denotes the energy per modulation symbol and
N0 = 2σ2 denotes the one-sided noise power spectral density, where

σ2 =
N0

2
= E(ν2) = D2(ν) (1.3.21)

is the variance of the noise. The transition probability for the continuous-valued
output is described by the probability density function (PDF):

fy|x(η|ξ) = 1√
πN0

exp

(
−(η − ξ)2

N0

)
. (1.3.22)

Hence, the conditional distribution of the output y for a given input x is described
by N(x, σ2), using the notation of Subsection A.4.2. The noise ν is distributed
according to N(0, σ2).
The energy per encoded bit is denoted Ec = Es/M . For the binary AWGN

channel, Ec = Es, and the input alphabet is Ain = {−√Ec,+
√
Ec}.

sign
y = x +ν

ν

yQ  =  sign (x +ν) x

Amod = {–   EC,  +   EC } Adem = R Adem = {–1, +1}

AWGN channel

BSC (pe)

Figure 1.6. The BSC as a binary AWGN channel with binary quantization

The basic principle of the AWGN channel is shown in Figure 1.6. In addition,
we suppose that the noise for consecutive AWGN transmissions is statistically
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independent to ensure a memoryless channel, this is the reason for the term white
noise. In case of colored noise, the random variables νt1 and νt2 , representing
the noise for transmissions at times t1 and t2, could be statistically dependent.

Every 2M -ary encoded modulation symbol ofAmod with the energy Es carries
M encoded bits. Hence, the corresponding energy per encoded bit is Ec = Es/M .

It should be emphasized that the term binary AWGN refers to binary mod-
ulation with M = 1, so Ec = Es for this simplest case. Now we consider
a demodulator performing binary hard quantization to produce binary output
with Adem = {−1,+1}. Together with binary input as shown in Figure 1.6, we
again obtain a BSC. The bit-error probability pe of the BSC is now calculated
as

pe = P (y < 0 | x = +
√

Ec) = P (y > 0 | x = −
√

Ec)

=

+∞∫
0

1√
πN0

exp

(
−(η +

√
Ec)

2

N0

)
dη

= Q

(√
2Ec

N0

)
, (1.3.23)

where

Q(α) =
1√
2π

∞∫
α

e−η
2/2 dη =

1

2
erfc

(
α√
2

)
(1.3.24)

= P (ν > α
√

N0/2) (1.3.25)

is the complementary Gaussian error function (see Appendix A.4.2). The graph-
ical and numerical relation between pe and Ec/N0 is shown in Figure 1.7 and
Table 1.1. Throughout this book, the graph pe = Q(

√
2Ec/N0) is also contained

in many other figures with performance results under the term “uncoded” (with
Ec = Eb, see the equation (1.4.11) with R = 1). Figure 1.7 also shows a simple
upper bound given by the function exp(−Ec/N0)/2, which is often used. This
function is implied by the inequality (A.4.17), proved in the appendix.

In Definition 1.3, we described the AWGN channel as an inner DMC
(Amod,Adem, Py|x) (omitting the tilde in x and y for simplification). Of course,
the AWGN channel with soft decisions could only be described by an inner DMC,
since the Gaussian PDF can only be defined for the real- or complex-valued al-
phabet Adem, but not for Aout. In most applications one of the following cases
applies.

(a) Hard-decision decoding with binary (q = 2) or non-binary (e.g., q = 256)
block codes, which will be introduced in Section 1.4.

The memoryless property of the inner DMC is only exactly transferred to
the abstract DC, if log2 q is a multiple of M or equal to M . This was shown
in Subsection 1.3.3.
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Figure 1.7. Error probability of the BSC as a binary quantized AWGN channel

Table 1.1. BSC bit-error probability
(often used values of pe expressed as a function of Ec/N0)

pe Ec/N0 [dB] pe Ec/N0 [dB]
10−1 −0.86 10−11 13.52
10−2 4.32 10−12 13.93
10−3 6.79 10−13 14.31
10−4 8.40 10−14 14.66
10−5 9.59 10−15 14.99
10−6 10.53 10−16 15.29
10−7 11.31 10−17 15.57
10−8 11.97 10−18 15.84
10−9 12.55 10−19 16.09
10−10 13.06 10−20 16.32

(b) Soft-decision decoding with binary convolutional codes (q = 2), which will
be introduced in Chapter 9. The combination with high-level modulation
schemes (M > 1) will be described in Section ?.? as well as in Chapter 11
for TCM.
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1.3.5 Octal Quantization of the AWGN Channel

If the quantization in the demodulator is not binary with 1 bit but octal with 3
bits, then the AWGN channel is transformed into a DMC with binary Amod =
{−√Ec,+

√
Ec} and octal Aout = {−1,−1′,−1′′,−1′′′,+1′′′,+1′′,+1′,+1}. An

important feature here is the optimum selection of the 7 quantization thresholds
(maybe with quantization intervals of unequal width). A detailed analysis of
the optimum thresholds can be found in [95].

� � �� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �

�

� 	 
 � � �

	 
  � � � � � � � � � � 	 
  � � � � � � � � � �

Figure 1.8. Probability distribution functions and octal quantization intervals for
the binary AWGN channel

In Figure 1.7, equally spaced quantization thresholds are used. The exact
alignment to the values −√Ec and +

√
Ec of the modulation alphabet obviously

requires an automatic gain control in the demodulator. The probability density
function (PDF) fy(η) =

1
2

(
fy|x(η| −

√
Ec) + fy|x(η|+

√
Ec)
)
of the received val-

ues results from the superposition of two Gaussian distributions, where Ec/N0 =
+3 dB was assumed for the illustration in Figure 1.7. In Figure 1.8, the transi-
tion probabilities for the octal channel are not given for the same signal-to-noise
ratio, but for Ec/N0 = −3 dB. The transition probabilities from −√Ec to +1
or +1′ and from +

√
Ec to −1 or −1′ are almost zero. The values of the PDF in

Figure 1.8 are calculated, for example, as follows:

P (−1′′′| −
√

Ec) = P (−0.5
√

Ec < y < 0|x = −
√

Ec)

= P (0.5
√

Ec < ν <
√

Ec)

= Q(0.5
√

2Ec/N0)−Q(
√

2Ec/N0)

= Q(0.5)−Q(1) = 0.3085− 0.1587 = 0.1498.
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Figure 1.9. Transition probabilities for the binary AWGN channel with octal
quantization

1.4 Block Coding

The basic ideas of error-control coding and information theory are best demon-
strated by block codes. For the time being, the few basics of block codes given
in this section will suffice, however, a detailed presentation will be provided in
Chapters 4 to 8. A further class of error-control codes will be introduced in
Chapter 9, the convolutional codes.

1.4.1 Basic Principles

The basic principle of block coding is illustrated in Figure 1.9. The data streams
of information symbols and encoded symbols are divided into blocks of length
k and n, which are called information words u = (u0, . . . , uk−1) and codewords
a = (a0, . . . , an−1). We suppose that k < n with the exception of k = n
for uncoded signaling. The encoder assigns a codeword to each information
word. At the output of the discrete channel the received word y = (y0, . . . , yn−1)
occurs from which the decoder generates an estimation û = (û0, . . . , ûk−1) for
the transmitted information word. The assignment of the codewords to the
information words in the encoder is required to be
(1) unique and injective: two different information words are mapped to two

different codewords;
(2) time-invariant : the assignment scheme does not change over a period of

time;
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(3) memoryless : each information word only influences one codeword, and each
codeword is influenced by only one information word.

Due to the memoryless property and time-invariance, sequence numbers are not
needed for indexing the information words or codewords. The transmission of a
single, isolated codeword is considered instead of a sequence of codewords.

y = (y0,...,yn–1)

Encoder

Decoder

Abstract
DC

u = (u0,...,uk–1)

û = (û0,...,ûk–1)

a = (a0,...,an–1)

Figure 1.10. The basic principle of (n, k) block coding

In Chapters 1 to 8, we will only discuss block codes for error-control coding,
primarily in conjunction with hard-decision decoding. In Chapters 9 and 10,
convolutional codes as another major class of error-control codes are introduced,
where the codeword is not only a function of the current information word
but also of the preceding information words, thereby introducing memory to
the encoder. Formally, block codes are a subset of convolutional codes with a
memory length of zero, and vice versa there are also truncated convolutional
codes which are a specific subset of block codes. However, these relationships
between block and convolutional codes are pure formalisms and are not really
meaningful.

Definition 1.4. The aforementioned method defines an (n, k, dmin)q block code,
or simply an (n, k) block code, where Fq denotes the common alphabet of size q for
the information symbols ui, the encoded symbols ai, the estimated information
symbols ûi, and dmin denotes the minimum Hamming distance (see Definition
1.8). The length n of the encoded blocks is called the block length and the ratio
of k to n is called the code rate

R =
k

n
< 1 in units of

[
info bit

encoded bit
=

info symbol

encoded symbol

]
. (1.4.1)

The code C is simply the set of all codewords. The inverse code rate 1/R =
n/k > 1 is called the bandwidth expansion factor. Two other forms of the code
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rate for the q-ary abstract DC and the 2M -ary inner DC are

Rq = R log2 q =
k

n
· log2 q in units of

[
information bit

q-ary encoded symbol

]
, (1.4.2)

RM = RM =
k

n
·M in units of

[
information bit

2M-ary modulation symb.

]
. (1.4.3)

The code rate R can be addressed in units of information bits per encoded
bit or equivalently in units of information symbols per encoded symbol, because
information and encoded symbols have the same range Fq. The code rate R
is actually dimensionless, of course. One 2M -ary modulation symbol carries
M encoded bits, and one encoded bit carries R information bits. Hence, one
modulation symbol actually carries RM = RM information bits. In other words,
RM is the number of information bits transmitted per waveform channel use (and
sometimes RM is referred to as the information transfer rate). For uncoded
signaling, R = 1, Rq = log2 q and RM = M . Obviously Rq = R for a binary
abstract DC with q = 2, and RM = R for binary modulation with M = 1.

The number of information words of length k with q-ary symbols is obviously
qk, hence the size of the code is qk, too. However, the total number of possible
words of length n is qn. So, the code C is a subset with the cardinality qk of the
set of all qn words:

C ⊆ Fn
q , |C| = qk = qnR. (1.4.4)

The block code defined by Definition 1.4 is somewhat restricted. Generally, the
cardinality |C| can be an arbitrary integer, i.e., not necessarily a power of q. In

this case, k = nR =
log2 |C|
log2 q

may not be an integer. However, this generalization

does not provide any theoretical advantages and in practice |C| = qk is always
chosen, with k as an integer.

The performance of a code is exclusively determined by how cleverly the qk

codewords are selected from the qn words. It will turn out that the codewords
will have to differ from each other as much as possible.

The encoder only makes an assignment between the qk information words
and the qk codewords. Except for the requirements of uniqueness, time-
invariance and memorylessness, this assignment function can be chosen arbi-
trarily. So the term performance of an encoder is meaningless. However, in
practice systematic encoders are used almost exclusively (see Definition 1.5),
and to simplify their realization linear codes (see Chapter 4) and cyclic codes
(see Chapter 6) are almost always used.

Definition 1.5. In a systematic encoder the mapping of the information words
to the codewords is such that the information word is a part of the codeword.
Then the other n− k positions of the codeword are called parity-check symbols.
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Example 1.2. The two encoding rules (parity-check symbols first or last)

00 �→ 000
01 �→ 011
10 �→ 101
11 �→ 110

00 �→ 000
01 �→ 101
10 �→ 110
11 �→ 011

create the same (3, 2)2 code C = {000, 011, 101, 110}. The encoding rule can not
be deduced from the code, and both encoders are similar. �

Definition 1.6. Two block codes are identical, if their sets of codewords are
identical. Two block codes are equivalent if their sets of codewords are identical
after a suitable permutation of the components of the codewords.

1.4.2 The Role of the Mapping between Coding and
Modulation

In addition to the symbol rate (or baud rate) rs, defined in (1.2.5), we introduce
two more data rates, which refer to bits rather than modulation symbols:

rb = information bit rate (info bits per second) (1.4.5)

rc =
rb
R

= encoded bit rate (encoded bits per second) (1.4.6)

rs =
rc
M

=
rb

RM
= symbol rate (modulation symbols per second). (1.4.7)

The information bit rate rb is also referred to as the throughput. Due to rc ≥
rb, error-control coding generally implies an increase of the data rate by the
bandwidth expansion factor of 1/R. Also, note that

rb
log2 q

= information symbol rate (info symbols per second) (1.4.8)

rc
log2 q

= encoded symbol rate (encoded symbols per second). (1.4.9)

Do not forget that the stand-alone term symbol always refers to the encoded
modulation symbols and not to the information symbols or encoded sym-
bols. Obviously, the number of blocks transmitted per second is given by
rb/(k · log2 q) = rc/(n · log2 q).

The data rates are summarized in Figure 1.10. Since the mapping causes a
symbol rate conversion of the factor (log2 q)/M according to (1.2.6), a codeword
a with block length n is assigned to a block x̃ of length ñ = (n · log2 q)/M with
q̃ = 2M -ary symbols. The pair mapping-demapping can be seen as part of the
coding scheme as well as of the abstract discrete channel:
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Figure 1.11. Overview of data rates for coded communication

Mapping-demapping as part of the coding scheme. A new (ñ, k̃)q̃ code
is created, where k̃ = (k · log2 q)/M , because the size of the code remains

the same since q̃k̃ = qk. This new code is directly connected to the inner
DC (Amod,Adem, Pỹ|x̃) with the 2M -ary modulation alphabet Amod, which is
used with a symbol rate of rs = rb/(RM) in units of 2M -ary modulations
symbols per second.

This aspect is important for the AWGN channel with soft decisions, as will
become clear with Theorem 1.4, and is the basis particularly for the joint op-
timization of coding and modulation, with trellis coded modulation (TCM)
in Chapter 11 as an important example.

Mapping-demapping as part of the abstract DC. The inner DC with the
2M -ary modulation alphabet Amod is invisible. The original code sees the
abstract DC (Ain,Aout, Py|x) with the q-ary input alphabet Fq = Ain and the
encoded symbol rate rc/ log2 q in units of q-ary encoded symbols per second.

This approach is the basis for the derivation of the general maximum-
likelihood decoder in Subsection 1.6.1, for the channel capacity of the ab-
stract DMC in Chapter 3 and for hard-decision decoding of block codes in
general.

In Chapter 3, we will introduce the channel capacity as a fundamental concept
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of information theory. It will provide us with a boundary for the maximum
throughput for an almost error-free transmission. In Subsection 3.2.2, we will
realize that the two approaches mentioned above lead to the same results.

For the AWGN channel with 2M -ary modulation we can define the bit and
symbol energies in a similar manner to the bit and symbol rates above:

Eb = energy per information bit (1.4.10)

Ec = R · Eb = energy per encoded bit (1.4.11)

Es = RM · Eb = energy per 2M -ary modulation symbol. (1.4.12)

Corresponding to rc = rb/R > rb, the relation Ec = REb < Eb indicates that
error-control coding generally implies a reduction of the available energy per
transmitted bit by a factor of R. Thus the bit-error rate of the received encoded
bits before the decoder will be higher than for uncoded transmission. A coding
gain is only achieved if the error-correction capability of the code compensates
for this negative effect.

1.5 Hamming Distance and Minimum

Distance

Let x , y , z be words of equal length n, for example codewords with symbols
from the alphabet Ain or received words with symbols from the alphabet Aout.

Definition 1.7. The Hamming distance dH(x , y) between the words x and y
is defined as the number of positions in which the components differ. If zero is
an element of the symbol range, the Hamming weight wH(x ) is the number of
components of x which are not zero.

The relation between the Hamming distance and the Hamming weight is as
follows:

wH(x ) = dH(x ,0 ) with 0 = (0, . . . , 0). (1.5.1)

If a “subtraction” is defined for the symbol range, then

dH(x , y) = wH(x − y). (1.5.2)

Theorem 1.1. The Hamming distance is a metric in the strict mathematical
sense, i.e., it has the following properties:

dH(x , y) = dH(y , x ) (1.5.3)

0 ≤ dH(x , y) ≤ n (1.5.4)

dH(x , y) = 0 ⇐⇒ x = y (1.5.5)

dH(x , y) ≤ dH(x , z ) + dH(z , y). (1.5.6)
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The inequality (1.5.6) is called the triangle inequality and is illustrated in Figure
1.11. If addition and subtraction are defined for the symbol range, then the
Hamming weight has the following properties:

wH(x ) = wH(−x ) (1.5.7)

0 ≤ wH(x ) ≤ n (1.5.8)

wH(x ) = 0 ⇐⇒ x = 0 (1.5.9)

wH(x + y) ≤ wH(x ) + wH(y). (1.5.10)

z

y
x

dH(x,z)

dH(x,y)

dH(z,y)

Figure 1.12. Illustration of the triangle inequality for the Hamming distance

Definition 1.8. The minimum Hamming distance (or simply minimum dis-
tance) dmin of an (n, k, dmin) block code C is defined as the minimum Hamming
distance between all codewords:

dmin = min{dH(a , b) | a , b ∈ C, a �= b}. (1.5.11)

The minimum distance is the most important parameter that determines
the performance of a code. Later, the full characterization of a code will be
defined by the weight distribution (see Definition 3.7). To compute the minimum
distance dmin, the distances between all pairs of codewords have to be considered.
The larger the minimum distance, i.e., the bigger the differences between the
codewords, the better the code. For a given code rate R = k/n and a given block
length n the code should be chosen such that dmin is as large as possible. Usually
dmin is larger (i.e., a better code), if the code rate is smaller (i.e., more bandwidth
is required) or if the block length is larger (i.e., more complex processing is
required).

Example 1.3. The (7, 4)2 Hamming code consists of 16 codewords of length 7:

C = { 0000000, 0100101, 1000011, 1100110,
0001111, 0101010, 1001100, 1101001,
0010110, 0110011, 1010101, 1110000,
0011001, 0111100, 1011010, 1111111 }.

Here, the code is given by a listing of all codewords and not by the (unimportant)
encoding rule, which could be systematic with the four information bits in front.
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The comparison of the first two codewords delivers an upper bound of dmin ≤ 3.
After comparing all other pairs, no pair with a Hamming distance of 2 or smaller
can be found, thus dmin = 3. �

We are obviously going to need better methods than a simple listing of
codewords to describe a code and to calculate the minimum distance, therefore
in later chapters we will introduce algebraic structures for the code.

1.6 Maximum-Likelihood Decoding (MLD)

1.6.1 Derivation of the General Decoding Rule

The optimum decoding rule should be designed to minimize the word-error prob-
ability Pw = P (û �= u) after decoding. Assume a stochastic discrete channel
which causes errors in the received word that the decoder may not be able to
correct, thus leading to errors in the estimated information word. These errors
in the transmission of a large number of words should occur as seldom as pos-
sible. For most applications it is irrelevant whether there is only one error or
several errors in a wrongly estimated information word. A minimization of the
bit-error probability Pb = P (ûi �= ui) is much more difficult.

So the objective is that the estimated information word is equal to the
transmitted word as often as possible. This is the requirement that should
determine the design of the decoder. We will see that the construction rule for
the decoder can be deduced even though the criterion Pw can not be explicitly
calculated:

Pw = P (û �= u) = P (â �= a) −→ minimum. (1.6.1)

The unique mapping of information words to codewords allows the codeword to
be estimated instead of the information word. The estimate for the information
word is correct if and only if the estimate for the codeword is correct. Therefore
the word-error probability can be defined by the codewords instead of by the
information words.

Figure 1.12 shows the basic principle for deriving the decoding rule. The
decoder is divided into a codeword estimator δ and an encoder inverse. This
encoder inverse is a direct inversion of the encoder and its only task is to de-
termine the corresponding information word û to each estimated codeword â .
This is a trivial operation, for example for systematic encoders this only means
omitting the parity-check symbols.

The whole intelligence of the decoder is in the codeword estimator which,
in contrast to the encoder inverse, only needs to know the code but not the
encoding rule. So the codeword estimator determines the estimated codeword
for the received word y . The formal function is

δ : y ∈ An
out �→ δ(y) = â ∈ C. (1.6.2)
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The objective for constructing the function δ is that the word-error probability
takes on its minimum:

Pw = P (δ(y) �= a) −→ minimum. (1.6.3)

The result of a transmission over a discrete channel with hard decisions, i.e.,
with Ain = Aout = Fq, can be subdivided into the following cases:

y = a Error-free correct transmission.

y ∈ C\{a} Falsification into a different codeword. This can never be detected
or corrected.

y �∈ C The error pattern is generally detectable and could perhaps be cor-
rected by the decoder. For δ(y) = a the decoding is correct and for
δ(y) �= a the decoding is wrong. The case of δ(y) = “undefined”
does not occur for an ideal decoder, but for decoders in practice this
case is quite sensible (see the following explanation).

In the formal description the function δ assigns one of qk codewords to each of the
qn possible received words. Later, we will see that this is not always implemented
in a real decoder, in other words it could be reasonable not to compute an optimal
estimate for each possible received word. Instead, the optimum decoding rule
is only realized for received words which occur most often. This method may
simplify the realization of the decoder a great deal.

If a word is completely received, a blockwise estimation of the codeword
or information word can be made almost immediately, apart from possible pro-
cessing delays depending on the implementation. So usually, the estimation
for the first information symbol in the receiver can only be made as soon as

∈ C

a ∈ C
Source

Sink

Encoder

Encoder
inverse

Codeword
estimator

δ

Abstract
DC

u

û y

Decoder

δ(y)=â

Figure 1.13. Illustration of the decoding rule
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the last transmitted encoded symbol has arrived. Therefore the block length n
determines a lower bound for the minimum delay for the coded transmission.

Assumption of equal a priori probabilities for the derivation of the decoding
rule: all qk information words are to occur at the encoder input with the same
probability q−k.

With this precondition all codewords occur with the same probability q−k

as well. Firstly, we take a look at the probability that an error occurs during
decoding. Assuming that a specific codeword a was transmitted, this is given
by the sum over the received words leading to an estimate unequal to a :

P (δ(y) �= a | a transmitted) =
∑
y

δ(y)�=a

P (y received | a transmitted)

=
∑
y

δ(y)�=a

Py|x(y |a). (1.6.4)

Secondly, for the sum over all codewords and all received words,∑
a∈C,y

Py|x(y |a) =
∑
a∈C

Py|x(arbitrary y received |a) =
∑
a∈C

1 = qk. (1.6.5)

Thirdly, Bayes’ theorem of total probability (A.3.1) implies that

Pw = P (δ(y) �= a)

=
∑
a∈C

P (δ(y) �= a | a transmitted) · P (a transmitted)

=
∑
a∈C

∑
y

δ(y)�=a

Py|x(y |a) · q−k with (1.6.4)

= q−k
( ∑

a∈C,y
Py|x(y |a)−

∑
a∈C,y
δ(y)=a

Py|x(y |a)
)

= 1− q−k ·
∑
a∈C,y
δ(y)=a

Py|x(y |a) with (1.6.5)

= 1− q−k ·
∑
y

Py|x(y |δ(y)).

To minimize Pw for each received word y , δ(y) = â should be chosen such that
the transition probability Py|x(y |â) takes on its maximum.

Theorem 1.2 (Maximum-Likelihood Decoder MLD). The word-error
probability Pw after decoding takes on its minimum if the decoding is as fol-
lows. For the received word y the estimated codeword â ∈ C is chosen such that
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the transition probability takes on its maximum:

Py|x(y |â) ≥ Py|x(y |b) for all b ∈ C. (1.6.6)

The ML decoding could also be ambiguous, then any codeword with maximum
transition probability is chosen.

This result is easily illustrated: for a given received word, the transmitted
word or codeword is sought which was most probably transmitted. The calcu-
lation of the word-error probability will be explained in Chapter 4.

However, without the precondition of equal a priori probabilities we obtain a
different decoder, the maximum a posteriori (MAP) decoder. The MAP decoder
must be adapted to the source statistics, or more precisely to the probability
distribution of the codewords. The MAP approach leads to a smaller word-
error probability than the ML decoder if the transmitted words are not equally
probable, see Problem 1.11. However, because of the dependency on the source
statistics the MAP decoder is only applied in special cases.

1.6.2 ML Decoding for the Hard-Decision DMC

The previous results become even clearer, if the q-ary symmetric DMC is con-
sidered. The equations (1.3.2) and (1.3.4) imply that for y = (y0, . . . , yn−1) and
â = (â0, . . . , ân−1) with d = dH(y , â),

Py|x(y |â) =
n−1∏
i=0

Py|x(yi|âi)

=
n−1∏
i=0

{
1− pe if yi = âi
pe/(q − 1) if yi �= âi

}

= (1− pe)
n−d ·

(
pe

q − 1

)d
= (1− pe)

n ·
(

pe
(1− pe)(q − 1)

)d
. (1.6.7)

The left-hand factor in the last equation does not depend on â , thus only the
right-hand factor needs to be minimized by choosing a suitable codeword â .
For pe < 0.5 the quotient is smaller than 1, thus we obtain the maximum if
d = dH(y , â) takes on its minimum:

Theorem 1.3 (MLD for Hard-Decision DMC). The word-error probabil-
ity Pw after decoding takes on its minimum if the decoding is as follows. For each
received word y the estimated codeword â ∈ C is chosen such that the Hamming
distance takes on its minimum:

dH(y , â) ≤ dH(y , b) for all b ∈ C. (1.6.8)
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Example 1.4. Consider the (5, 2)2 code C = {00000︸ ︷︷ ︸
a1

, 11100︸ ︷︷ ︸
a2

, 00111︸ ︷︷ ︸
a3

, 11011︸ ︷︷ ︸
a4

} for

which obviously dmin = 3. In the following table the distances to all codewords
for three exemplary received words are given together with the resulting decision
of the codeword estimator.

y dH(y ,a1) dH(y ,a2) dH(y ,a3) dH(y ,a4) δ(y)
10000 1 2 4 3 a1

11000 2 1 5 2 a2

10001 2 3 3 2 a1 or a4

For the last received word, ideally the decision should be randomly, either a1 or
a4. �

For the (7, 4) Hamming code in Example 1.2 this method already becomes
quite elaborate, so that codes used in practice should fulfill two requirements:
(1) the minimum distance dmin should be as large as possible; (2) the structure
of the code C should simplify the search for the minimum Hamming distance
in the decoder. Both requirements presume an algebraic structure. For (1) the
structure is required to be able to find good codes and for (2) the structure is
required to facilitate decoders with reasonable implementations.

1.6.3 ML Decoding for the AWGN Channel

We will now derive the MLD for the AWGN channel, similar to Theorem 1.3.
According to (1.3.11), the probability density functions (PDF) for words factors
into a product of PDFs for symbols and can then be rewritten as follows:

fy|x(y |â) =
n−1∏
i=0

fy|x(yi|âi)

=
n−1∏
i=0

1√
πN0

exp

(
−(yi − âi)

2

N0

)

= (πN0)
−n/2 exp

(
− 1

N0

n−1∑
i=0

(yi − âi)
2

)

= c · exp
(
− 1

N0
‖y − â‖2

)
, (1.6.9)

where c is constant and ‖y − â‖2 is the Euclidean norm of y − â which is
identical to the Euclidean distance between y and â . The right-hand factor
is to be maximized by making a suitable choice for â . This is achieved by
minimizing the norm, leading us to the following theorem.

Theorem 1.4 (MLD for Soft-Decision AWGN channel). The word-error
probability Pw after decoding takes on its minimum if the decoding is as follows.



1.6 Maximum-Likelihood Decoding (MLD) 39

For the received word y the estimated codeword â ∈ C is chosen such that the
Euclidean distance to the received word takes on its minimum:

‖y − â‖ ≤ ‖y − b‖ for all b ∈ C. (1.6.10)

This result is easily comprehensible. Obviously, the difference between hard-
and soft-decision ML decoding corresponds to the difference between the Ham-
ming and the Euclidean distance for the search of the nearest codeword.

Now let us formally consider, which consequences result from the fact that
the AWGN channel is only defined as an inner DC. The decoder has to search for
the codeword b with the minimum Euclidean distance from the received word
y . However, the codeword b is not taken from An

in = Fn
q but from Añ

mod ⊂ Rñ or
Cñ with ñ = (n · log2 q)/M as in Subsection 1.4.2. So the decoder must imitate
the mapping and the demapping, and calculate the distance in R or C and not
in Fq. If the mapping causes a data rate conversion, the block length changes
from n to ñ. In conclusion, only the first of the two approaches of Subsection
1.4.2 (mapping as part of the coding scheme) is applicable in this case. So it is
irrelevant how the memoryless property is affected by the demapping, because
only the inner DC is relevant.

Equation (1.6.10) can be written as
∑

i(yi− âi)
2 ≤∑i(yi− bi)

2. The terms
y2i can be omitted, leading to the simpler form of

n−1∑
i=0

(â2i − 2yiâi) ≤
n−1∑
i=0

(b2i − 2yibi) for all b ∈ C,

which is equivalent to

n−1∑
i=0

yiâi − 1

2

n−1∑
i=0

â2i ≥
n−1∑
i=0

yibi − 1

2

n−1∑
i=0

b2i for all b ∈ C.

Particularly for binary codes we have âi, bi ∈ {−
√
Ec,+

√
Ec}, so the quadratic

terms disappear, leaving

n−1∑
i=0

yiâi ≥
n−1∑
i=0

yibi for all b ∈ C. (1.6.11)

For a transmitted word, the estimated codeword is chosen such that the correla-
tion with the received word takes on its maximum. Yet, 2k scalar products are
to be calculated which is still so time-consuming that block codes are usually
only decoded with hard decisions allowing for less complex decoders.
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1.7 Asymptotic Coding Gains

The symbol-error probability Ps = P (âi �= ai) at the decoder output, also called
bit-error probability Pb or bit-error rate (BER) in case of q = 2 with Pb = Ps,
only refers to the information symbols or bits and does not take the parity-check
symbols into account. The exact relation between Ps or Pb and the word-error
rate Pw = P (â �= a) at the decoder output is relatively complicated, but can
at least be easily lower and upper bounded. Since the number of errors in a
wrongly decoded word is between 1 and k,

1

k
· Pw ≤ Ps ≤ Pw. (1.7.1)

Typically, the approximation

Ps ≈ dmin

k
· Pw (1.7.2)

is reasonable which presumes dmin errors per wrongly decoded word. A fairly
exact approximation of Ps and a further argument for (1.7.2) will be given in
Theorem 4.15. However, this problem is not that important in the practical
evaluation of codes.

The comparison of binary codes (q = 2) to each other and to uncoded
transmission is very often based on the use of binary modulation (M = 1) over
the AWGN channel. As in Definition 1.3, let N0 be the one-sided noise power
density and Eb the energy per information bit. As already stated in (1.4.11),
the energy per encoded bit

Ec = R · Eb < Eb (1.7.3)

is smaller than Eb by the factor of R. Comparing coded and uncoded transmis-
sion with equal signal energy, the signal energy for coded transmission has to be
shared among the information bits and the parity-check bits, so that the energy
per transmitted bit is reduced. Hence, the bit-error rate of the received bits
before the decoder will be higher than for uncoded transmission. This negative
effect must be compensated for by the error-correction capability of the code in
order to achieve a coding gain in total.

Figures 1.13 and 1.14 present comparisons of coded and uncoded transmis-
sions over the AWGN channel by displaying the word- and bit-error rates Pw and
Pb over the signal-to-noise ratio Eb/N0. For the coding schemes two exemplary
perfect codes are used, the advantage being that the word-error probability can
be exactly calculated (see Theorem 4.15) without any bounding techniques. The
graph for the uncoded transmission is identical to the results in Table 1.1.

The (23, 12)2 Golay code (see also Example 4.6) with 212 = 4096 codewords
of length 23 is used in Figure 1.13 as an example to demonstrate the principal
behaviour of coded transmission over the AWGN channel. In case of small
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Figure 1.14. Error probability of the (23, 12)2 Golay code with hard decisions

Eb/N0 (representing poor channel conditions), uncoded transmission is better
than coded transmission. However, there is a cross-over point (at about 5 dB
for this example) after which a coding gain is achieved. This gain is about 2.0
dB at Pb = 10−6 and more than 2.6 dB below Pb = 10−10 (representing very
good channel conditions). The difference between the error probabilities Pw or
Pb is almost negligible.

The term coding gain in units of decibels refers exactly to the horizontal
gap between the coded and uncoded performance curves. In other words this
is the achievable reduction of the transmit power for coded transmission with
the same error probability after decoding as the error probability of uncoded
transmission. Moreover, the vertical difference between the curves describes the
reduction of the error probability of coded versus uncoded transmission for the
same signal-to-noise ratio Eb/N0.

For excellent channel conditions with Eb/N0 → ∞ the graphs are almost
parallel and they also become steeper and steeper, approaching a gradient of
−∞. The horizontal gap between the coded and uncoded transmission is not
arbitrarily large as Eb/N0 →∞, but converges to a limit, which we shall deter-
mine now.

Let Eb denote the energy per information bit for coded transmission and
E ′
b for uncoded transmission. For uncoded transmission we have Pb as the BSC

bit-error probability, hence, according to (1.3.12) and (A.3.18),

Pb,unc = pe = Q

(√
2E ′

b

N0

)
≈ const · e−E′

b/N0 . (1.7.4)



42 1. Introduction to Coded Digital Communications

As we will show in Theorem 4.15, for a coded transmission with hard decisions
and for large Eb/N0, we have approximately

Pw,cod ≈ const · pt+1
e . (1.7.5)

The value const represents a constant which depends on the code, pe is the BSC
bit-error probability of the encoded bits with Ec = REb, and t = �(dmin− 1)/2�
corresponds to about half the minimum distance (�λ� denotes the biggest integer
≤ λ). Thus, according to (1.7.2) and (A.3.18),

Pb,cod ≈ const · Pw,cod

≈ const · pt+1
e

≈ const ·
[
Q

(√
2REb

N0

)]t+1

≈ const · e−R(t+1)·Eb/N0 . (1.7.6)

The coding gain refers to equal bit-error rates Pb,unc = Pb,cod, implying that

const · e−E′
b/N0 = const · e−R(t+1)·Eb/N0 . (1.7.7)

The constants are, at most, linearly dependent on Eb/N0 or t and can therefore
be neglected while taking the logarithm for large Eb/N0

E ′
b

N0
≈ R(t+ 1) · Eb

N0
. (1.7.8)

Thus the asymptotic coding gain for hard-decision decoding is

Ga,hard = 10 · log10(R(t+ 1)) dB. (1.7.9)

For soft-decision decoding we will later show in Theorem 3.17 that

Pw,cod ≈ const · e−Rdmin·Eb/N0 . (1.7.10)

The comparison to (1.7.4) leads to the following asymptotic coding gain for
soft-decision decoding

Ga,soft = 10 · log10(Rdmin) dB. (1.7.11)

For a large Eb/N0 the error probability decreases exponentially with Eb/N0:

Pb = const · e−Eb/N0·const. (1.7.12)

This result is independent of whether coding was applied or not. For large
Eb/N0 the graphs in Figure 1.13 are parallel with a horizontal gap of Ga,hard.
The gradients of the graphs converge to −∞ as Eb/N0 → ∞. This is why
the constants in (1.7.7) and also the difference between bit- and word-error
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probability as in (1.7.1) or (1.7.2) are not that important because the vertical
distance between the Pb and Pw curves remains constant, however, the horizontal
distance between the Pb and Pw converges to zero.

The great importance of the minimum distance now becomes immediately
clear. The larger dmin is, while keeping the code rate constant (for instance this
is achievable with larger block lengths or more generally with better codes), the
more Eb (for coded transmission) can be reduced in contrast to E ′

b (for uncoded
transmission).

Soft decisions generally provide an asymptotic coding gain of about 3 dB,
resulting from the approximation t+ 1 ≈ dmin/2:

Ga,soft ≈ Ga,hard + 3.01 dB. (1.7.13)

However, for “realistic” values of Eb/N0 or “medium” values of Pb the coding
gain with soft decisions is usually only in the order of 2 dB.

For the (23, 12)2 Golay code in Figure 1.13 with t = 3 the asymptotic coding
gain is Ga,hard = 10 · log10(12/23 · 4) = 3.2 dB, however, this result can not be
taken from the figure itself, since a bigger Eb/N0 would have to be considered.
For Pw = 10−10 or Eb/N0 = 10.5 dB the coding gain is only about 2.6 dB. So, Ga

is a measure for the comparison of different codes rather than for the calculation
of the coding gain for moderate error rates.

Figure 1.14 shows the error probability of the (7, 4)2 Hamming code with
t = 1. Its coding gain is Ga,hard = 10 · log10(4/7 · 2) = 0.6 dB. The coded
transmission is slightly better than the uncoded case, but only if the channel is
good or if the error probability is small. High coding gains can only be expected
for complex codes, in particular only for big block lengths, which is exactly the
statement of the channel coding theorem (see Section 3.2).

Further error probability graphs over Eb/N0 are given in Section 4.8 when
comparing hard- and soft-decision decoding for the Hamming code and in par-
ticular in Section 8.1 for RS codes and in Section 8.2 for BCH codes as well as
in Section 10.5 for convolutional codes. The analytical calculation of the error
probability for block codes can be found in Sections 4.7 and 4.8, for convolu-
tional codes in Section 10.5 and for trellis coded modulation (TCM) in Section
11.7. We will realize that the error probability calculation becomes easier with
bigger Eb/N0. On the other hand, error probabilities can be simulated down to
an order of about 10−5 . . . 10−6 with acceptable processing time. Hence, theory
and simulation complement each other almost perfectly.

The channel for a concrete application is usually so complicated that an exact
description is impossible to make. Therefore codes are usually designed for the
simple BSC or AWGN channel models which also provides a certain amount
of robustness against changes of the channel properties. However, models for
channels with burst errors (see Section 5.6, 5.7) as well as for fading channels
(see Section 11.2, 11.3) are also used.

So it is not surprising that the coding gain in practice is not exactly the
same as the theoretical forecast. In addition, there are implementation losses as
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Figure 1.15. Error probability of the (7, 4)2 Hamming code with hard decisions

well as a further effect, since for coded transmission the energy per code bit is
smaller than for uncoded transmission. This might make the synchronization of
frequency, phase, clock and frame much more difficult than all the operations in
the encoder and decoder.

If coding is used when the modulation system and the bandwidth are not
changed, while the data rate of the information bits is reduced, the coding gain
is G∗

a,hard = 10 · log10(t+1) dB. In other words, this is the asymptotic difference
between coded and uncoded signaling if the graphs are displayed over Ec/N0

instead of over Eb/N0 (see also Subsection 2.5.2 and Figure 2.16).

1.8 The Basic Idea of Error-Correction Codes

The concept of block codes helps us to explain the fundamental idea of error-
correction coding, since the underlying principle is very similar to the principle
of digitization in communications with similar pros and cons:

Digitization is the quantization of the symbols within their range. If ∆ is the
quantization width, then ∆/2 is the maximum quantization error.

• Advantage: small transmission errors (smaller than ∆/2) are completely
eliminated in contrast to analog transmission, where the signal-to-noise ratio
gets worse after each amplification.
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• Disadvantage: even without transmission errors there always remains an av-
erage quantization error of

√
∆2/12. Large transmission errors (greater than

∆/2) are further increased because of the assignment to wrong quantization
levels.

• Conclusion: use quantization only if the majority of errors is smaller than
∆/2.

Error-control coding is the quantization of entire long symbol sequences in
the time domain. The n − k parity-check symbols are chosen such that the
codewords of length n differ in at least dmin positions. This is possible because
in the set of qn possible words only qk words are actually codewords. As we will
prove in detail in Section 4.2:

• Advantage: for less than dmin/2 transmission errors the received word is
closer to the transmitted word than to any other codeword and can therefore
be decoded correctly.

• Disadvantage: for more than dmin/2 transmission errors a wrong codeword
might be chosen and the number of errors is increased.

• Conclusion: use error-control coding only if there are less than dmin/2 errors
for the majority of received words. So error-control coding only makes sense
for relatively good channels and for high requirements of reliability, whereas
it is not recommended for bad channels.

The main idea of error-control coding is to transform long information blocks
into even longer code blocks. The amount of redundancy added depends on the
expected channel quality and the desired transmission quality.

1.9 Problems

1.1. Assume a BSC with the bit-error probability pe = 0.01. With which
probability is the word 0110100 changed to 0010101 during transmission?

1.2. Assume a BSC with pe = 0.1. For words of length 7 determine the
probability of the error patterns of all Hamming weights. With which
probability do a maximum of 2 or more than 2 errors occur?

1.3. Assume a BSC with pe = 0.001. Determine the approximate probability
for more than 2 errors for words of length 31.

1.4. Describe the channel which is formed by the concatenation of two BSC’s
with the bit-error probabilities pe,1 and pe,2.

1.5. Prove that wH(x + y) ≥ wH(x )− wH(y).
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1.6. Prove and illustrate

dH(x , y) ≥ |dH(x , z )− dH(z , y)|. (1.9.1)

1.7. Prove the quadrangular inequality

|dH(x , y)− dH(x
′, y ′)| ≤ dH(x , x

′) + dH(y , y
′). (1.9.2)

1.8. How many different (3, 2, 2)2 block codes are there?

1.9. For the function f(pe) = ple(1− pe)
n−l, prove and interpret the result of

max
pe

f(pe) = f

(
l

n

)
= 2−nH2(l/n), (1.9.3)

where H2(.) is the binary entropy function as given in (A.2.3).

1.10. Assume the (3, 1, 3)2 code C = {(−1;−1;−1), (+1;+1;+1)} and the
AWGN channel. For the received word y = (+0.1;−1.0;+0.1) deter-
mine the ML estimation with soft and hard decisions.

1.11. Prove without the precondition of equal a priori probabilities that the
word-error probability Pw is minimized by the maximum a posteriori
decoder which is defined as follows: for the received word y the estimate
â ∈ C is the codeword for which the a posteriori probability P (x|y) =
P (y|x) · P (x)/P (y) takes on its maximum, or equivalently expressed:

Px(â) · Py|x(y |â) ≥ Px(b) · Py|x(y |b) for all b ∈ C. (1.9.4)


